ARTICLES

Tailoring molecular termination for thermally stable perovskite solar cells

Xiao Zhang1, 2, Sai Ma1, 2, Jingbi You3, 4, Yang Bai1, 2 and Qi Chen1, 2,

+ Author Affiliations

 Corresponding author: Qi Chen, qic@bit.edu.cn

PDF

Turn off MathJax

Abstract: Interfacial engineering has made an outstanding contribution to the development of high-efficiency perovskite solar cells (PSCs). Here, we introduce an effective interface passivation strategy via methoxysilane molecules with different terminal groups. The power conversion efficiency (PCE) has increased from 20.97% to 21.97% after introducing a 3-isocyanatopropyltrimethoxy silane (IPTMS) molecule with carbonyl group, while a trimethoxy[3-(phenylamino)propyl] silane (PAPMS) molecule containing aniline group deteriorates the photovoltaic performance as a consequence of decreased open circuit voltage. The improved performance after IPTMS treatment is ascribed to the suppression of non-radiative recombination and enhancement of carrier transportation. In addition, the devices with carbonyl group modification exhibit outstanding thermal stability, which maintain 90% of its initial PCE after 1500 h exposure. This work provides a guideline for the design of passivation molecules aiming to deliver the efficiency and thermal stability simultaneously.

Key words: perovskite solar cellsterminal groupsinterfacial engineeringthermal stability



[1]
Im J H, Jang I H, Pellet N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol, 2014, 9, 927 doi: 10.1038/nnano.2014.181
[2]
Sun S Y, Salim T, Mathews N, et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ Sci, 2014, 7, 399 doi: 10.1039/C3EE43161D
[3]
Dong Q F, Fang Y J, Shao Y C, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347, 967 doi: 10.1126/science.aaa5760
[4]
Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519 doi: 10.1126/science.aaa2725
[5]
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342, 341 doi: 10.1126/science.1243982
[6]
Chang N L, Yi Ho-Baillie A W, Basore P A, et al. A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules. Prog Photovolt: Res Appl, 2017, 25, 390 doi: 10.1002/pip.2871
[7]
National Renewable Energy Laboratory. Best research-cell efficiencies chart (2020). https://www.nrel.gov/pv/cell-efficiency.html
[8]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131, 6050 doi: 10.1021/ja809598r
[9]
Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2, 591 doi: 10.1038/srep00591
[10]
Zhou H P, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345, 542 doi: 10.1126/science.1254050
[11]
Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 2019, 13, 460 doi: 10.1038/s41566-019-0398-2
[12]
Jeong M, Choi I W, Go E M, et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 2020, 369, 1615 doi: 10.1126/science.abb7167
[13]
Yin W J, Shi T T, Yan Y F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett, 2014, 104, 063903 doi: 10.1063/1.4864778
[14]
Sherkar T S, Momblona C, Gil-Escrig L, et al. Recombination in perovskite solar cells: Significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett, 2017, 2, 1214 doi: 10.1021/acsenergylett.7b00236
[15]
Yavari M, Mazloum-Ardakani M, Gholipour S, et al. Reducing surface recombination by a poly(4-vinylpyridine) interlayer in perovskite solar cells with high open-circuit voltage and efficiency. ACS Omega, 2018, 3, 5038 doi: 10.1021/acsomega.8b00555
[16]
Correa-Baena J P, Tress W, Domanski K, et al. Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy Environ Sci, 2017, 10, 1207 doi: 10.1039/C7EE00421D
[17]
Son D Y, Lee J W, Choi Y J, et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat Energy, 2016, 1, 16081 doi: 10.1038/nenergy.2016.81
[18]
Tumen-Ulzii G, Qin C J, Klotz D, et al. Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells. Adv Mater, 2020, 32, 1905035 doi: 10.1002/adma.201905035
[19]
Liu T H, Zhou Y Y, Li Z, et al. Stable formamidinium-based perovskite solar cells via in situ grain encapsulation. Adv Energy Mater, 2018, 8, 1800232 doi: 10.1002/aenm.201800232
[20]
Sutton R J, Eperon G E, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater, 2016, 6, 1502458 doi: 10.1002/aenm.201502458
[21]
Lee J W, Kim D H, Kim H S, et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater, 2015, 5, 1501310 doi: 10.1002/aenm.201501310
[22]
Zhang Y, Seo S, Lim S Y, et al. Achieving reproducible and high-efficiency (> 21%) perovskite solar cells with a presynthesized FAPbI3 powder. ACS Energy Lett, 2020, 5, 360 doi: 10.1021/acsenergylett.9b02348
[23]
Wang H, Zhu C, Liu L, et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv Mater, 2019, 31, 1904408 doi: 10.1002/adma.201904408
[24]
Yang S, Chen S S, Mosconi E, et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science, 2019, 365, 473 doi: 10.1126/science.aax3294
[25]
Zhang Z H, Li J, Fang Z M, et al. Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency. J Semicond, 2021, 42, 030501 doi: 10.1088/1674-4926/42/3/030501
[26]
Fang Z M, Meng X Y, Zuo C T, et al. Interface engineering gifts CsPbI2.25Br0.75 solar cells high performance. Sci Bull, 2019, 64, 1743 doi: 10.1016/j.scib.2019.09.023
[27]
Wan F, Ke L L, Yuan Y B, et al. Passivation with crosslinkable diamine yields 0.1 V non-radiative Voc loss in inverted perovskite solar cells. Sci Bull, 2021, 66, 417 doi: 10.1016/j.scib.2020.10.010
[28]
Cheng M, Zuo C T, Wu Y Z, et al. Charge-transport layer engineering in perovskite solar cells. Sci Bull, 2020, 65, 1237 doi: 10.1016/j.scib.2020.04.021
[29]
Zhu L F, Xu Y Z, Zhang P P, et al. Investigation on the role of Lewis bases in the ripening process of perovskite films for highly efficient perovskite solar cells. J Mater Chem A, 2017, 5, 20874 doi: 10.1039/C7TA05378A
[30]
Shao Y C, Xiao Z G, Bi C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun, 2014, 5, 5784 doi: 10.1038/ncomms6784
[31]
Xu J X, Buin A, Ip A H, et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat Commun, 2015, 6, 7081 doi: 10.1038/ncomms8081
[32]
Zheng X P, Chen B, Dai J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat Energy, 2017, 2, 1 doi: 10.1038/nenergy.2017.102
[33]
Tan H R, Jain A, Voznyy O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355, 722 doi: 10.1126/science.aai9081
[34]
Rajagopal A, Stoddard R J, Jo S B, et al. Overcoming the photovoltage plateau in large bandgap perovskite photovoltaics. Nano Lett, 2018, 18, 3985 doi: 10.1021/acs.nanolett.8b01480
[35]
Yang D, Zhou X, Yang R X, et al. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ Sci, 2016, 9, 3071 doi: 10.1039/C6EE02139E
Fig. 1.  (Color online) (a) Chemical structure of PAPMS, MPTMS and IPTMS passivation layer used in this work. (b) Schematic illustration of the formation process of perovskite films based on a sequential deposition. (c) XPS spectra of Pb 4f for the perovskite films with and without siloxane treatment. (d) XRD pattern of perovskite films with and without siloxane treatment.

Fig. 2.  (Color online) Photovoltaic performance distribution of PSCs with different termination groups of methoxysilane (a) PCE, (b) open-circuit voltage (Voc), (c) short-circuit current density (Jsc), (d) fill factor (FF) for control, PAPMS, MPTMS and IPTMS devices. (e) Current density−voltage (JV) curves of the control device and self-cross-linking devices with PAPMS, MPTMS, and IPTMS. (f) EQE spectra for the control and IPTMS devices. (g, h) Steady-state power output for the best-performing of (g) control and (h) IPTMS device.

Fig. 3.  (Color online) (a) PL emission intensity mapping of control, PAPMS, MPTMS and IPTMS treated films. (b) EIS spectra of devices based on the pristine and IPTMS treatment. (c) Normalized TPC decay curves for control- and IPTMS-treated devices. (d) Dark IV curves of devices with the structure of ITO/perovskite/Au for the control and IPTMS treated film.

Fig. 4.  (Color online) Long-term thermal stability of unsealed devices based on pristine, MPTMS and IPTMS treatment (a) PCE, (b) Voc, (c) Jsc and (d) FF.

[1]
Im J H, Jang I H, Pellet N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol, 2014, 9, 927 doi: 10.1038/nnano.2014.181
[2]
Sun S Y, Salim T, Mathews N, et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ Sci, 2014, 7, 399 doi: 10.1039/C3EE43161D
[3]
Dong Q F, Fang Y J, Shao Y C, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347, 967 doi: 10.1126/science.aaa5760
[4]
Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519 doi: 10.1126/science.aaa2725
[5]
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342, 341 doi: 10.1126/science.1243982
[6]
Chang N L, Yi Ho-Baillie A W, Basore P A, et al. A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules. Prog Photovolt: Res Appl, 2017, 25, 390 doi: 10.1002/pip.2871
[7]
National Renewable Energy Laboratory. Best research-cell efficiencies chart (2020). https://www.nrel.gov/pv/cell-efficiency.html
[8]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131, 6050 doi: 10.1021/ja809598r
[9]
Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2, 591 doi: 10.1038/srep00591
[10]
Zhou H P, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345, 542 doi: 10.1126/science.1254050
[11]
Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 2019, 13, 460 doi: 10.1038/s41566-019-0398-2
[12]
Jeong M, Choi I W, Go E M, et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science, 2020, 369, 1615 doi: 10.1126/science.abb7167
[13]
Yin W J, Shi T T, Yan Y F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett, 2014, 104, 063903 doi: 10.1063/1.4864778
[14]
Sherkar T S, Momblona C, Gil-Escrig L, et al. Recombination in perovskite solar cells: Significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett, 2017, 2, 1214 doi: 10.1021/acsenergylett.7b00236
[15]
Yavari M, Mazloum-Ardakani M, Gholipour S, et al. Reducing surface recombination by a poly(4-vinylpyridine) interlayer in perovskite solar cells with high open-circuit voltage and efficiency. ACS Omega, 2018, 3, 5038 doi: 10.1021/acsomega.8b00555
[16]
Correa-Baena J P, Tress W, Domanski K, et al. Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy Environ Sci, 2017, 10, 1207 doi: 10.1039/C7EE00421D
[17]
Son D Y, Lee J W, Choi Y J, et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat Energy, 2016, 1, 16081 doi: 10.1038/nenergy.2016.81
[18]
Tumen-Ulzii G, Qin C J, Klotz D, et al. Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells. Adv Mater, 2020, 32, 1905035 doi: 10.1002/adma.201905035
[19]
Liu T H, Zhou Y Y, Li Z, et al. Stable formamidinium-based perovskite solar cells via in situ grain encapsulation. Adv Energy Mater, 2018, 8, 1800232 doi: 10.1002/aenm.201800232
[20]
Sutton R J, Eperon G E, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater, 2016, 6, 1502458 doi: 10.1002/aenm.201502458
[21]
Lee J W, Kim D H, Kim H S, et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv Energy Mater, 2015, 5, 1501310 doi: 10.1002/aenm.201501310
[22]
Zhang Y, Seo S, Lim S Y, et al. Achieving reproducible and high-efficiency (> 21%) perovskite solar cells with a presynthesized FAPbI3 powder. ACS Energy Lett, 2020, 5, 360 doi: 10.1021/acsenergylett.9b02348
[23]
Wang H, Zhu C, Liu L, et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv Mater, 2019, 31, 1904408 doi: 10.1002/adma.201904408
[24]
Yang S, Chen S S, Mosconi E, et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science, 2019, 365, 473 doi: 10.1126/science.aax3294
[25]
Zhang Z H, Li J, Fang Z M, et al. Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency. J Semicond, 2021, 42, 030501 doi: 10.1088/1674-4926/42/3/030501
[26]
Fang Z M, Meng X Y, Zuo C T, et al. Interface engineering gifts CsPbI2.25Br0.75 solar cells high performance. Sci Bull, 2019, 64, 1743 doi: 10.1016/j.scib.2019.09.023
[27]
Wan F, Ke L L, Yuan Y B, et al. Passivation with crosslinkable diamine yields 0.1 V non-radiative Voc loss in inverted perovskite solar cells. Sci Bull, 2021, 66, 417 doi: 10.1016/j.scib.2020.10.010
[28]
Cheng M, Zuo C T, Wu Y Z, et al. Charge-transport layer engineering in perovskite solar cells. Sci Bull, 2020, 65, 1237 doi: 10.1016/j.scib.2020.04.021
[29]
Zhu L F, Xu Y Z, Zhang P P, et al. Investigation on the role of Lewis bases in the ripening process of perovskite films for highly efficient perovskite solar cells. J Mater Chem A, 2017, 5, 20874 doi: 10.1039/C7TA05378A
[30]
Shao Y C, Xiao Z G, Bi C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun, 2014, 5, 5784 doi: 10.1038/ncomms6784
[31]
Xu J X, Buin A, Ip A H, et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat Commun, 2015, 6, 7081 doi: 10.1038/ncomms8081
[32]
Zheng X P, Chen B, Dai J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat Energy, 2017, 2, 1 doi: 10.1038/nenergy.2017.102
[33]
Tan H R, Jain A, Voznyy O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355, 722 doi: 10.1126/science.aai9081
[34]
Rajagopal A, Stoddard R J, Jo S B, et al. Overcoming the photovoltage plateau in large bandgap perovskite photovoltaics. Nano Lett, 2018, 18, 3985 doi: 10.1021/acs.nanolett.8b01480
[35]
Yang D, Zhou X, Yang R X, et al. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ Sci, 2016, 9, 3071 doi: 10.1039/C6EE02139E

2021-112201-suppl.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2989 Times PDF downloads: 80 Times Cited by: 0 Times

    History

    Received: 25 April 2021 Revised: 18 May 2021 Online: Accepted Manuscript: 05 July 2021Uncorrected proof: 12 July 2021Published: 01 November 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiao Zhang, Sai Ma, Jingbi You, Yang Bai, Qi Chen. Tailoring molecular termination for thermally stable perovskite solar cells[J]. Journal of Semiconductors, 2021, 42(11): 112201. doi: 10.1088/1674-4926/42/11/112201 X Zhang, S Ma, J B You, Y Bai, Q Chen, Tailoring molecular termination for thermally stable perovskite solar cells[J]. J. Semicond., 2021, 42(11): 112201. doi: 10.1088/1674-4926/42/11/112201.Export: BibTex EndNote
      Citation:
      Xiao Zhang, Sai Ma, Jingbi You, Yang Bai, Qi Chen. Tailoring molecular termination for thermally stable perovskite solar cells[J]. Journal of Semiconductors, 2021, 42(11): 112201. doi: 10.1088/1674-4926/42/11/112201

      X Zhang, S Ma, J B You, Y Bai, Q Chen, Tailoring molecular termination for thermally stable perovskite solar cells[J]. J. Semicond., 2021, 42(11): 112201. doi: 10.1088/1674-4926/42/11/112201.
      Export: BibTex EndNote

      Tailoring molecular termination for thermally stable perovskite solar cells

      doi: 10.1088/1674-4926/42/11/112201
      More Information
      • Author Bio:

        Xiao Zhang received his BS degrees from Beijing Institute of Technology in 2018, and got his MS under the supervision of Professor Qi Chen in 2021. Now he is a research assistant in Qi Chen Group. His research focuses on perovskite solar cells

        Qi Chen received his Ph.D. degree from the University of California, Los Angeles (UCLA). Qi Chen joined the Beijing Institute of Technology (BIT) in 2016. His research focuses on hybrid materials design, processing and applications in opto-electronics and for energy harvesting and storage. He is now working on the commercialization of perovskite photovoltaics

      • Corresponding author: qic@bit.edu.cn
      • Received Date: 2021-04-25
      • Revised Date: 2021-05-18
      • Published Date: 2021-11-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return