J. Semicond. > Volume 36 > Issue 12 > Article Number: 123001

Enhancement of phosphors-solubility in ZnO by thermal annealing

K. Mahmood 1, , N. Amin 1, , A. Ali 1, , M. Ajaz un Nabi 1, , M. Imran Arshad 1, , M. Zafar 2, and M. Asghar 2,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: We have demonstrated the effect of annealing temperature on the diffusion density of phosphors in zinc oxide. The P-dopant P430 was sprayed on ZnO pellets and annealed at different temperatures from 500 to 1000℃ with a step of 100℃ for one hour using a programmable furnace. The concentration of P was controlled by varying the annealing temperature and the maximum solubility of P(3% At) was achieved at annealing 800℃ determined by energy dispersive X-ray diffraction(EDX) measurements. X-ray diffraction(XRD) confirmed the hexagonal structure of ZnO and showed that the growth direction was along the c-axis. We observed a maximum up shift in the(002) plane at an annealing temperature of 800℃, suggesting that P atoms replaced Zn atoms in the structure which results in the reduction of the lattice constant. Room temperature photoluminescence(PL) spectrum consists of a peak at 3.28 eV and related to band edge emission, but samples annealed at 800 and 900℃ have an additional donor acceptor pair peak at 3.2 eV. Hall effect measurements confirmed the p-type conductivity of the sample annealed at 800℃.

Key words: ZnOP-dopantEDXXRDPL

Abstract: We have demonstrated the effect of annealing temperature on the diffusion density of phosphors in zinc oxide. The P-dopant P430 was sprayed on ZnO pellets and annealed at different temperatures from 500 to 1000℃ with a step of 100℃ for one hour using a programmable furnace. The concentration of P was controlled by varying the annealing temperature and the maximum solubility of P(3% At) was achieved at annealing 800℃ determined by energy dispersive X-ray diffraction(EDX) measurements. X-ray diffraction(XRD) confirmed the hexagonal structure of ZnO and showed that the growth direction was along the c-axis. We observed a maximum up shift in the(002) plane at an annealing temperature of 800℃, suggesting that P atoms replaced Zn atoms in the structure which results in the reduction of the lattice constant. Room temperature photoluminescence(PL) spectrum consists of a peak at 3.28 eV and related to band edge emission, but samples annealed at 800 and 900℃ have an additional donor acceptor pair peak at 3.2 eV. Hall effect measurements confirmed the p-type conductivity of the sample annealed at 800℃.

Key words: ZnOP-dopantEDXXRDPL



References:

[1]

Asghar M, Mahmood K, Tsu R. Investigation of VO-Zni native donor complex in MBE grown bulk ZnO[J]. Semi Cond Sci Technol, 2013, 28: 105019.

[2]

Asghar M, Mahmood K, Hasan M A. Effect of substrate temperature on the structural and electrical properties of MBE grown ZnO[J]. Key Eng Mater, 2012.

[3]

Qin J M, Yao B, Yan Y. Formation of stable and reproducible low resistivity and high carrier concentration p type ZnO doped at high pressure with Sb[J]. Appl Phys Lett, 2009, 95: 022101.

[4]

Sentosa D, Liu B, Wong L M. Activation of phosphorous doping in high quality ZnO thin film grown on Yttria-stabilized zirconia(111) by thermal treatment[J]. Thin Solid Films, 2011, 520: 994.

[5]

Oh M S, Hwang D K, Choi Y S. Microstructural properties of phosphorus-doped p-type ZnO grown by radio-frequency magnetron sputtering[J]. Appl Phys Lett, 2008, 93: 111905.

[6]

Mandalapu L J, Xiu F X, Yang Z. p-type behavior from Sb-doped ZnO heterojunction photodiodes[J]. Appl Phys Lett, 2006, 88: 112108.

[7]

Bian J, Li X, Zhang C. Synthesis and characterization of two-layer-structured ZnO p-n homojunctions by ultrasonic spray pyrolysis[J]. Appl Phys Lett, 2004, 84: 3783.

[8]

Wei S H. Overcoming the doping bottleneck in semiconductors[J]. Computational Mater Sci, 2004, 30: 337.

[9]

Wenckstern H V, Benndorf G, Heitsch S. Properties of phosphorus doped ZnO[J]. Appl Phys A, 2007, 88: 125.

[10]

Su S C, Yang X D, Hu C D. Structural, optical and electronic properties of P doped p-type ZnO thin film[J]. Physica B, 2011, 406: 1533.

[11]

Vaithianathan V, Asokan K, Park J Y. Local electronic structure of phosphorus-doped ZnO films investigated by X-ray absorption near-edge spectroscopy[J]. Appl Phys A, 2009, 94: 995.

[12]

Ding R, Zhu H, Wang Y. Realization of phosphorus-doped p-type ZnO thin films via diffusion and thermal activation[J]. Mater Lett, 2008, 62: 498.

[13]

Navendu G, Dhirendra Kumar S. Structural and optical properties of unannealed and annealed ZnO nanoparticles prepared by a chemical precipitation technique[J]. Physica E, 2010, 42: 1675.

[14]

Yu Z G, Gong H, Wu P. dopant sources choice for formation of p-type ZnO:phosphorus compound sources[J]. Chem Mater, 2005, 17: 852.

[15]

Navendu K S, Dhirendra G. Structural and optical properties of unannealed and annealed ZnO nanoparticles prepared by a chemical precipitation technique[J]. Phys E, 2010, 42: 1675.

[16]

Veeramuthu V, Shunichi H, Jae Young P. Photoluminescence in phosphorous-implanted ZnO films[J]. J Appl Phys, 2007, 102: 086107.

[1]

Asghar M, Mahmood K, Tsu R. Investigation of VO-Zni native donor complex in MBE grown bulk ZnO[J]. Semi Cond Sci Technol, 2013, 28: 105019.

[2]

Asghar M, Mahmood K, Hasan M A. Effect of substrate temperature on the structural and electrical properties of MBE grown ZnO[J]. Key Eng Mater, 2012.

[3]

Qin J M, Yao B, Yan Y. Formation of stable and reproducible low resistivity and high carrier concentration p type ZnO doped at high pressure with Sb[J]. Appl Phys Lett, 2009, 95: 022101.

[4]

Sentosa D, Liu B, Wong L M. Activation of phosphorous doping in high quality ZnO thin film grown on Yttria-stabilized zirconia(111) by thermal treatment[J]. Thin Solid Films, 2011, 520: 994.

[5]

Oh M S, Hwang D K, Choi Y S. Microstructural properties of phosphorus-doped p-type ZnO grown by radio-frequency magnetron sputtering[J]. Appl Phys Lett, 2008, 93: 111905.

[6]

Mandalapu L J, Xiu F X, Yang Z. p-type behavior from Sb-doped ZnO heterojunction photodiodes[J]. Appl Phys Lett, 2006, 88: 112108.

[7]

Bian J, Li X, Zhang C. Synthesis and characterization of two-layer-structured ZnO p-n homojunctions by ultrasonic spray pyrolysis[J]. Appl Phys Lett, 2004, 84: 3783.

[8]

Wei S H. Overcoming the doping bottleneck in semiconductors[J]. Computational Mater Sci, 2004, 30: 337.

[9]

Wenckstern H V, Benndorf G, Heitsch S. Properties of phosphorus doped ZnO[J]. Appl Phys A, 2007, 88: 125.

[10]

Su S C, Yang X D, Hu C D. Structural, optical and electronic properties of P doped p-type ZnO thin film[J]. Physica B, 2011, 406: 1533.

[11]

Vaithianathan V, Asokan K, Park J Y. Local electronic structure of phosphorus-doped ZnO films investigated by X-ray absorption near-edge spectroscopy[J]. Appl Phys A, 2009, 94: 995.

[12]

Ding R, Zhu H, Wang Y. Realization of phosphorus-doped p-type ZnO thin films via diffusion and thermal activation[J]. Mater Lett, 2008, 62: 498.

[13]

Navendu G, Dhirendra Kumar S. Structural and optical properties of unannealed and annealed ZnO nanoparticles prepared by a chemical precipitation technique[J]. Physica E, 2010, 42: 1675.

[14]

Yu Z G, Gong H, Wu P. dopant sources choice for formation of p-type ZnO:phosphorus compound sources[J]. Chem Mater, 2005, 17: 852.

[15]

Navendu K S, Dhirendra G. Structural and optical properties of unannealed and annealed ZnO nanoparticles prepared by a chemical precipitation technique[J]. Phys E, 2010, 42: 1675.

[16]

Veeramuthu V, Shunichi H, Jae Young P. Photoluminescence in phosphorous-implanted ZnO films[J]. J Appl Phys, 2007, 102: 086107.

[1]

K. Mahmood, M. Asghar, N. Amin, Adnan Ali. Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing. J. Semicond., 2015, 36(3): 033001. doi: 10.1088/1674-4926/36/3/033001

[2]

Su Hongbo, Dai Jiangnan, Pu Yong, Wang Li, Li Fan, Fang Wenqing, Jiang Fengyi. Effect of Growth Temperature on Properties of ZnO Thin Films. J. Semicond., 2006, 27(7): 1221.

[3]

Zhang Panfeng, Wei Hongyuan, Fan Haibo, Cong Guangwei, Yang Shaoyan, Zhu Qinsheng, Liu Xianglin. Effect of Different Facets of on the Growth of vapor deposition. J. Semicond., 2007, 28(S1): 289.

[4]

Fu Guangsheng, Zhang Jiangyong, Ding Wenge, Lü Xueqin, Yu Wei. Analysis of Interface Luminescence in Nano-Sized Amorphous Silicon. J. Semicond., 2007, 28(S1): 91.

[5]

Gao Xin, Sun Guosheng, Li Jinmin, Zhao Wanshun, Wang Lei, Zhang Yongxing, Zeng Yiping. Homoepitaxial Growth and Properties of 4H-SiC by Chemical Vapor Deposition. J. Semicond., 2005, 26(S1): 70.

[6]

Wan Qixin, Xiong Zhihua, Rao Jianping, Dai Jiangnan, Le Shuping, Wang Guping, Jiang Fengyi. First-Principles Calculation of ZnO Doped with Ag. J. Semicond., 2007, 28(5): 696.

[7]

Zhang Rui, Zhang Fan, Zhao Youwen, Dong Zhiyuan, Yang Jun. Characterization of Phosphorus Diffused ZnO Bulk Single Crystals. J. Semicond., 2008, 29(9): 1674.

[8]

Zhao Bo, Li Qingshan, Zhang Ning, Chen Da, Zheng Xuegang. Optical and Electrical Properties of ZnO/PS Heterostructure. J. Semicond., 2006, 27(7): 1217.

[9]

Liu Tingliang, He Xulin, Zhang Jingquan, Feng Lianghuan, Wu Lili, Li Wei, Zeng Guanggen, Li Bing. Effect of ZnO films on CdTe solar cells. J. Semicond., 2012, 33(9): 093003. doi: 10.1088/1674-4926/33/9/093003

[10]

Chang Peng, Liu Su, Chen Rongbo, Tang Ying, Han Genliang. Low Temperature Synthesis and Optical Properties of ZnO Nanowires. J. Semicond., 2007, 28(10): 1503.

[11]

Chang Yongqin, Yu Dapeng, Long Yi. Fabrication and Magnetic Property of Mn Doped ZnO Nanowires. J. Semicond., 2007, 28(S1): 296.

[12]

Dong Xin, Zhao Wang, Zhang Yuantao, Zhang Baolin, Li Xiangping, Du Guotong. MgZnO/ZnO p-n Heterojunctions Fabricated by MOCVD. J. Semicond., 2008, 29(7): 1338.

[13]

Ye Zhizhen, Xu Weizhong, Zeng Yujia, Jiang Liu, Zhao Binghui, Zhu Liping, Lü Jianguo, Huang Jingyun, Wang Lei, Li Xianhang. Fabrication of ZnO Light-Emitting Diode by Using MOCVD Method. J. Semicond., 2005, 26(11): 2264.

[14]

Zhang Qifeng, Rong Yi, , Chen Xianxiang, , Zhang Gengmin, Zhang Zhaoxiang, Xue Zengquan. Fabrication of ZnO Nanowires by Vapor-Phase Deposition and Their Field Emission Properties. J. Semicond., 2006, 27(7): 1225.

[15]

Zheng Yongping, Chen Zhigao, Lu Yu, Wu Qingyun, Weng Zhenzhen, Huang Zhigao. Influence of Be-Doping on Electronic Structure and Optical Properties of ZnO. J. Semicond., 2008, 29(12): 2316.

[16]

Zhang Rui, Zhang Fan, Zhao Youwen, Dong Zhiyuan, Yang Jun. Defects and Properties of Antimony-Doped ZnO Single Crystal. J. Semicond., 2008, 29(10): 1988.

[17]

Zhang Linli, Guo Changxin, Chen Jiangang, Hu Juntao. Solution Growth of Morphology Controllable ZnO One-Dimensional Nanorods and Microrods. J. Semicond., 2005, 26(11): 2127.

[18]

Liu Li, Feng Yingliang, Yu Lianxiang, Wang Lianyuan, Zhang Tong. Preparation and Acetone Sensing Properties of Flower-Like ZnO Nanorods. J. Semicond., 2008, 29(12): 2372.

[19]

Zhong Sheng, Xu Xiaoqiu, Sun Lijie, Lin Bixia, Fu Zhuxi. Influence of the Annealing Temperature on the Structural and Optical Properties of N-Doped ZnO Films. J. Semicond., 2008, 29(7): 1330.

[20]

Zhu Xiaming, Wu Huizhen, Wang Shuangjiang, Zhang Yingying, Cai Chunfeng, Si Jianxiao, Yuan Zijian, Du Xiaoyang, Dong Shurong. Optical and electrical properties of N-doped ZnO and fabrication of thin-film transistors. J. Semicond., 2009, 30(3): 033001. doi: 10.1088/1674-4926/30/3/033001

Search

Advanced Search >>

GET CITATION

K. Mahmood, N. Amin, A. Ali, M. Ajaz un Nabi, M. Imran Arshad, M. Zafar, M. Asghar. Enhancement of phosphors-solubility in ZnO by thermal annealing[J]. J. Semicond., 2015, 36(12): 123001. doi: 10.1088/1674-4926/36/12/123001.

Export: BibTex EndNote

Article Metrics

Article views: 1367 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 08 April 2015 Manuscript revised: Online: Published: 01 December 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误