J. Semicond. > Volume 40 > Issue 3 > Article Number: 032701

Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method

Toshihiro Miyata , , Kyosuke Watanabe , Hiroki Tokunaga and Tadatsugu Minami

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: We improved the photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor thin films prepared by a sputtering apparatus with our newly developed multi-chamber system. We also obtained the highest efficiency (3.21%) in an AZO/p-Cu2O heterojunction solar cell prepared with optimized pre-sputtering conditions using our newly developed multi-chamber sputtering system. This value achieves the same or higher characteristics than AZO/Cu2O solar cells with a similar structure prepared by the pulse laser deposition method.

Key words: Cu2OAZOsolar celloxide thin filmmagnetron sputtering

Abstract: We improved the photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor thin films prepared by a sputtering apparatus with our newly developed multi-chamber system. We also obtained the highest efficiency (3.21%) in an AZO/p-Cu2O heterojunction solar cell prepared with optimized pre-sputtering conditions using our newly developed multi-chamber sputtering system. This value achieves the same or higher characteristics than AZO/Cu2O solar cells with a similar structure prepared by the pulse laser deposition method.

Key words: Cu2OAZOsolar celloxide thin filmmagnetron sputtering



References:

[1]

N Asima, K Sopiana, S Ahmadib, et al. A review on the role of materials science in solar cells. Renew Sustain Energy Rev, 2012, 16: 5834.

[2]

A E Rakhshani. Preparation, characteristics and photovoltaic properties of cuprous oxide – a review. Solid-State Electron, 1986, 29: 7.

[3]

G P Pollack. D Trivichi. Photoelectric properties of cuprous oxide. J Appl Phys, 1975, 46: 163.

[4]

J Herion, E A Niekisch, G Scharl. Investigation of metal oxide/cuprous oxide heterojunction solar cells. Sol Energy Mater, 1980, 4: 101.

[5]

L Papadimitriou, N A Economou, D Trivich. Heterojunction solar cells on cuprous oxide. Sol Cells, 1981, 3: 73.

[6]

L C Olsen, F W Addis, W Miller. Experimental and theoretical studies of Cu2O solar cells. Sol Cells, 1982, 7: 247.

[7]

W M Sears, E Fortin, J B Webb. Indium tin oxide/Cu2O photovoltaic cells. Thin Solid Films, 1983,103: 303.

[8]

B P Rai. Cu2O solar cells: A review. Sol Cells, 1988, 25: 265.

[9]

R N Briskman. A study of electrodeposited cuprous oxide photovoltaic cells. Sol Energy Mater Sol Cells, 1992, 27: 361.

[10]

T Minami, Y Nishi, T Miyata, et al. High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets. Appl Phys Express, 2011, 4: 062301.

[11]

Y S Lee, J Heo, S C Siah, et al. Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells. Energy Environ Sci, 2013, 6: 2112.

[12]

T Minami, Y Nishi, T Miyata. High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer. Appl Phys Express, 2013, 6: 044101.

[13]

S W Lee, Y S Lee, J Heo, et al. Improved Cu2O-based solar cells using atomic layer deposition to control the Cu oxidation state at the p-n junction. Adv Energy Mater, 2014, 4: 1301916.

[14]

Y S Lee, D Chua, R E Brandt, et al. Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells. Adv Mater, 2014, 26: 4704.

[15]

T Minami, Y Nishi, T Miyata. Heterojunction solar cell with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and p-type sodium-doped Cu2O sheet. Appl Phys Express, 2015, 8: 022301.

[16]

Y Ievskaya, R L Z Hoye, A Sadhanala, et al. Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: Improved interface quality and solar cell performanceSol. Energy Mater Sol Cells, 2015, 135: 43.

[17]

R L Z Hoye, R E Brandt, Y Ievskaya, et al. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells. APL Mater, 2015, 3: 020901.

[18]

T Minami, T Miyata, Y Nishi. Efficiency improvement of Cu2O-based heterojunction solar cells fabricated using thermally oxidized copper sheets. Thin Solid Films, 2014, 559: 105.

[19]

T Minami, T Miyata, Y Nishi. Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure. Sol Energy, 2014, 105: 206.

[20]

T Minami, Y Nishi, T Miyata. Cu2O-based solar cells using oxide semiconductors. J Semicond, 2016, 37: 014002.

[21]

Nishi Y, Miyata T, Nomoto J, et al. High-efficiency Cu2O-based heterojunction solar cells fabricated on thermally oxidized copper sheet. Conf Rec 37th IEEE Photovoltaic Specialists Conf, 2011, 266

[22]

T. Minami, Y. Nishi, and T. Miyata. Impact of incorporating sodium into polycrystalline p-type Cu2O for heterojunction solar cell applications. Appl Phys Lett, 2014, 105: 212104.

[1]

N Asima, K Sopiana, S Ahmadib, et al. A review on the role of materials science in solar cells. Renew Sustain Energy Rev, 2012, 16: 5834.

[2]

A E Rakhshani. Preparation, characteristics and photovoltaic properties of cuprous oxide – a review. Solid-State Electron, 1986, 29: 7.

[3]

G P Pollack. D Trivichi. Photoelectric properties of cuprous oxide. J Appl Phys, 1975, 46: 163.

[4]

J Herion, E A Niekisch, G Scharl. Investigation of metal oxide/cuprous oxide heterojunction solar cells. Sol Energy Mater, 1980, 4: 101.

[5]

L Papadimitriou, N A Economou, D Trivich. Heterojunction solar cells on cuprous oxide. Sol Cells, 1981, 3: 73.

[6]

L C Olsen, F W Addis, W Miller. Experimental and theoretical studies of Cu2O solar cells. Sol Cells, 1982, 7: 247.

[7]

W M Sears, E Fortin, J B Webb. Indium tin oxide/Cu2O photovoltaic cells. Thin Solid Films, 1983,103: 303.

[8]

B P Rai. Cu2O solar cells: A review. Sol Cells, 1988, 25: 265.

[9]

R N Briskman. A study of electrodeposited cuprous oxide photovoltaic cells. Sol Energy Mater Sol Cells, 1992, 27: 361.

[10]

T Minami, Y Nishi, T Miyata, et al. High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets. Appl Phys Express, 2011, 4: 062301.

[11]

Y S Lee, J Heo, S C Siah, et al. Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells. Energy Environ Sci, 2013, 6: 2112.

[12]

T Minami, Y Nishi, T Miyata. High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as n-type layer. Appl Phys Express, 2013, 6: 044101.

[13]

S W Lee, Y S Lee, J Heo, et al. Improved Cu2O-based solar cells using atomic layer deposition to control the Cu oxidation state at the p-n junction. Adv Energy Mater, 2014, 4: 1301916.

[14]

Y S Lee, D Chua, R E Brandt, et al. Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells. Adv Mater, 2014, 26: 4704.

[15]

T Minami, Y Nishi, T Miyata. Heterojunction solar cell with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and p-type sodium-doped Cu2O sheet. Appl Phys Express, 2015, 8: 022301.

[16]

Y Ievskaya, R L Z Hoye, A Sadhanala, et al. Fabrication of ZnO/Cu2O heterojunctions in atmospheric conditions: Improved interface quality and solar cell performanceSol. Energy Mater Sol Cells, 2015, 135: 43.

[17]

R L Z Hoye, R E Brandt, Y Ievskaya, et al. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells. APL Mater, 2015, 3: 020901.

[18]

T Minami, T Miyata, Y Nishi. Efficiency improvement of Cu2O-based heterojunction solar cells fabricated using thermally oxidized copper sheets. Thin Solid Films, 2014, 559: 105.

[19]

T Minami, T Miyata, Y Nishi. Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure. Sol Energy, 2014, 105: 206.

[20]

T Minami, Y Nishi, T Miyata. Cu2O-based solar cells using oxide semiconductors. J Semicond, 2016, 37: 014002.

[21]

Nishi Y, Miyata T, Nomoto J, et al. High-efficiency Cu2O-based heterojunction solar cells fabricated on thermally oxidized copper sheet. Conf Rec 37th IEEE Photovoltaic Specialists Conf, 2011, 266

[22]

T. Minami, Y. Nishi, and T. Miyata. Impact of incorporating sodium into polycrystalline p-type Cu2O for heterojunction solar cell applications. Appl Phys Lett, 2014, 105: 212104.

[1]

Tadatsugu Minami, Yuki Nishi, Toshihiro Miyata. Cu2O-based solar cells using oxide semiconductors. J. Semicond., 2016, 37(1): 014002. doi: 10.1088/1674-4926/37/1/014002

[2]

Xiao Qingquan, Xie Quan, Chen Qian, Zhao Kejie, Yu Zhiqiang, Shen Xiangqian. Annealing effects on the formation of semiconducting Mg2Si film using magnetron sputtering deposition. J. Semicond., 2011, 32(8): 082002. doi: 10.1088/1674-4926/32/8/082002

[3]

Shao Lexi, Fu Yujun, Zhang Jun, He Deyan. Electrical and Optical Properties of Cu2 ZnSnS4 Thin Films Prepared for Solar Cell Absorber. J. Semicond., 2007, 28(S1): 337.

[4]

Zongcun Liang, Dianlei Wang, Yanbin Zhu. Effects of substrate characteristics on the passivation performance of ALD-Al2O3 thin film for high-efficiency solar cells. J. Semicond., 2014, 35(5): 054002. doi: 10.1088/1674-4926/35/5/054002

[5]

Hong Li, Hongbin Pu, Chunlei Zheng, Zhiming Chen. β-FeSi2 films prepared on 6H-SiC substrates by magnetron sputtering. J. Semicond., 2015, 36(6): 063005. doi: 10.1088/1674-4926/36/6/063005

[6]

Wu Jiangyan, Yan Jinliang, Yue Wei, Li Ting. Structural and optical properties of Zn3N2 films prepared by magnetron sputtering in NH3-Ar mixture gases. J. Semicond., 2012, 33(4): 043001. doi: 10.1088/1674-4926/33/4/043001

[7]

K. Kacha, F. Djeffal, H. Ferhati, D. Arar, M. Meguellati. Numerical investigation of a double-junction a:SiGe thin-film solar cell including the multi-trench region. J. Semicond., 2015, 36(6): 064004. doi: 10.1088/1674-4926/36/6/064004

[8]

Duofa Wang, Haizheng Tao, Xiujian Zhao, Meiyan Ji, Tianjin Zhang. Enhanced photovoltaic performance in TiO2/P3HT hybrid solar cell by interface modification. J. Semicond., 2015, 36(2): 023006. doi: 10.1088/1674-4926/36/2/023006

[9]

Zhang Jun, Xie Erqing, Fu Yujun, Li Hui, Shao Lexi. Influence of Substrate Temperature and Nitrogen Gas on Zinc Nitride Thin Films Prepared by RF Reactive Sputtering. J. Semicond., 2007, 28(8): 1173.

[10]

Jie Wu, Junfei Shi, Chengyuan Dong, Zhongfei Zou, Yuting Chen, Daxiang Zhou, Zhe Hu, Runze Zhan. Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors. J. Semicond., 2014, 35(1): 014003. doi: 10.1088/1674-4926/35/1/014003

[11]

Chen Xinliang, Xu Buheng, Xue Junming, Zhao Ying, Zhang Xiaodan, Geng Xinhua. ZnO Thin Film Growth by Metal Organic Chemical Vapor Deposition and Its Back Contact Application in Solar Cells. J. Semicond., 2005, 26(12): 2363.

[12]

Junfei Shi, Chengyuan Dong, Wenjun Dai, Jie Wu, Yuting Chen, Runze Zhan. The influence of RF power on the electrical properties of sputtered amorphous In-Ga-Zn-O thin films and devices. J. Semicond., 2013, 34(8): 084003. doi: 10.1088/1674-4926/34/8/084003

[13]

Fucheng Wan, Fuling Tang, Hongtao Xue, Wenjiang Lu, Yudong Feng, Zhiyuan Rui. Effects of defect states on the performance of CuInGaSe2 solar cells. J. Semicond., 2014, 35(2): 024011. doi: 10.1088/1674-4926/35/2/024011

[14]

Chen Weidong, Feng Lianghuan, Lei Zhi, Zhang Jingquan, Wu Lili, Cai Wei, Cai Yaping, Yao Feifei, Li Wei, Li Bing, Zheng Jiagui. Growth of AlSb Polycrystalline Films by Magnetron Sputtering and Annealing. J. Semicond., 2006, 27(3): 541.

[15]

Ou Weiying, Zhao Lei, Diao Hongwei, Zhang Jun, Wang Wenjing. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching. J. Semicond., 2011, 32(5): 056002. doi: 10.1088/1674-4926/32/5/056002

[16]

Zhang Huafu, Yang Shugang, Liu Hanfa, Yuan Changkun. Preparation and characterization of transparent conducting ZnO:W films by DC magnetron sputtering. J. Semicond., 2011, 32(4): 043002. doi: 10.1088/1674-4926/32/4/043002

[17]

Ma Quanbao, Zhu Liping, Ye Zhizhen, He Haiping, Wang Jingrui, Hu Shaohua, Zhao Binghui. Influence of Sputtering Pressure on the Properties of ZnO:Ga Films Prepared by DC Reactive Magnetron Sputtering. J. Semicond., 2007, 28(S1): 285.

[18]

Zhifang Lei, Guangyu Chen, Shibin Gu, Lingling Dai, Rong Yang, Yuan Meng, Ted Guo, Liwei Li. Development of aluminum-doped ZnO films for a-Si:H/μc-Si:H solar cell applications. J. Semicond., 2013, 34(6): 063004. doi: 10.1088/1674-4926/34/6/063004

[19]

Bing Cheng, Yijun Yin, Jianqiang Han, Jie Zhang. The TCR of Ni24.9Cr72.5Si2.6 thin films deposited by DC and RF magnetronsputtering. J. Semicond., 2017, 38(5): 053005. doi: 10.1088/1674-4926/38/5/053005

[20]

Zhang Huafu, Liu Hanfa, Lei Chengxin, Zhou Aiping, Yuan Changkun. Low-temperature deposition of transparent conducting Mn–W co-doped ZnO thin films. J. Semicond., 2010, 31(8): 083005. doi: 10.1088/1674-4926/31/8/083005

Search

Advanced Search >>

GET CITATION

T Miyata, K Watanabe, H Tokunaga, T Minami, Photovoltaic properties of Cu2O-based heterojunction solar cells using n-type oxide semiconductor nano thin films prepared by low damage magnetron sputtering method[J]. J. Semicond., 2019, 40(3): 032701. doi: 10.1088/1674-4926/40/3/032701.

Export: BibTex EndNote

Article Metrics

Article views: 631 Times PDF downloads: 63 Times Cited by: 0 Times

History

Manuscript received: 15 June 2018 Manuscript revised: 29 September 2018 Online: Accepted Manuscript: 11 January 2019 Uncorrected proof: 21 January 2019 Published: 01 March 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误