J. Semicond. > Volume 36 > Issue 12 > Article Number: 122002

Theoretical study of defect impact on two-dimensional MoS2

Anna V. Krivosheeva 1, , Victor L. Shaposhnikov 1, , Victor E. Borisenko 1, , Jean-Louis Lazzari 2, , Chow Waileong 3, 4, , Julia Gusakova 1, 3, and Beng Kang Tay 3, 4,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Our theoretical findings demonstrate for the first time a possibility of band-gap engineering of monolayer MoS2 crystals by oxygen and the presence of vacancies. Oxygen atoms are revealed to substitute sulfur ones, forming stable MoS2-xOx ternary compounds, or adsorb on top of the sulfur atoms. The substituting oxygen provides a decrease of the band gap from 1.86 to 1.64 eV and transforms the material from a direct-gap to an indirect-gap semiconductor. The surface adsorbed oxygen atoms decrease the band gap up to 0.98 eV depending on their location tending to the metallic character of the electron energy bands at a high concentration of the adsorbed atoms. Oxygen plasma processing is proposed as an effective technology for such band-gap modifications.

Key words: two-dimensional crystalmolybdenum disulfideband gapvacancyoxygen

Abstract: Our theoretical findings demonstrate for the first time a possibility of band-gap engineering of monolayer MoS2 crystals by oxygen and the presence of vacancies. Oxygen atoms are revealed to substitute sulfur ones, forming stable MoS2-xOx ternary compounds, or adsorb on top of the sulfur atoms. The substituting oxygen provides a decrease of the band gap from 1.86 to 1.64 eV and transforms the material from a direct-gap to an indirect-gap semiconductor. The surface adsorbed oxygen atoms decrease the band gap up to 0.98 eV depending on their location tending to the metallic character of the electron energy bands at a high concentration of the adsorbed atoms. Oxygen plasma processing is proposed as an effective technology for such band-gap modifications.

Key words: two-dimensional crystalmolybdenum disulfideband gapvacancyoxygen



References:

[1]

Geim A K, Novoselov K S. The rise of grapheme[J]. Nature Mater, 2007, 6: 183.

[2]

Lalmi B, Oughaddou H, Enriquez H. Epitaxial growth of a silicene sheet[J]. Appl Phys Lett, 2010, 97: 22310.

[3]

Du Y, Zhuang J, Liu H. Tuning the band gap in silicene by oxidation[J]. ACS Nano, 2014, 8: 10019.

[4]

Jamgotchian H, Colignon Y, Hamzaoui N. Growth of silicene layers on Ag(111):unexpected effect of the substrate temperature[J]. J Phys:Condens Matter, 2012, 24: 172001.

[5]

Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotech, 2012, 7: 699.

[6]

Liao J, Sa B, Zhou J. Design of high-efficiency visible-light photocatalysts for water splitting:MoS2/AlN(GaN) heterostructures[J]. J Phys Chem C, 2014, 118: 17594.

[7]

Wang H, Yu L, Lee Y H. Integrated circuits based on bilayer MoS2 transistors[J]. Nano Lett, 2012, 12: 4674.

[8]

Lee H S, Min S W, Chang Y G. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Lett, 2012, 12: 3695.

[9]

Sarkar D, Liu W, Xie X. MoS2 field-effect transistor for next-generation label-free biosensors[J]. ACS Nano, 2014, 8: 3992.

[10]

Krasnozhon D, Lembke D, Nyffeler C. MoS2 transistors operating at gigahertz frequencies[J]. Nano Lett, 2014, 14: 5905.

[11]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nature Nanotech, 2011, 6: 147.

[12]

Kaasbjerg K, Thygesen K S, Jacobsen K W. Phonon-limited mobility in n-type single-layer MoS2 from first principles[J]. Phys Rev B, 2012, 85: 115317.

[13]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotech, 2013, 8: 497.

[14]

Kam K K, Parkinson B. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides[J]. J Phys Chem, 1982, 86: 463.

[15]

Gmelin handbook of inorganic and organometallic chemistry. 8th ed[J]. Berlin:Springer-Verlag, 1995.

[16]

Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105: 136805.

[17]

Scalise E, Houssa M, Pourtois G. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2[J]. Nano Res, 2012, 5: 43.

[18]

Splendiani A, Sun L, Zhang Y. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10: 1271.

[19]

Ramasubramaniam A, Naveh D, Towe E. Tunable band gaps in bilayer transition-metal dichalcogenides[J]. Phys Rev B, 2011, 84: 205325.

[20]

Huang M, Cho K. Density functional theory study of CO hydrogenation on a MoS2 surface[J]. J Phys Chem C, 2009, 113: 5238.

[21]

Moses P G, Mortensen J J, Lundqvist B I. Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS2[J]. J Chem Phys, 2009, 130: 104709.

[22]

Ataca C, Sahin H, Aktürk E. Mechanical and electronic properties of MoS2 nanoribbons and their defects[J]. J Phys Chem C, 2011, 115: 3934.

[23]

Ma Y, Dai Y, Guo M. Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers[J]. Phys Chem Chem Phys, 2011, 13: 15546.

[24]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. J Comput Mater Sci, 1996, 6: 15.

[25]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77: 3865.

[26]

Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[J]. Phys Rev Lett, 1980, 45: 566.

[27]

Klimeš J, Bowler D R, Michaelides A. Van der Waals density functionals applied to solids[J]. Phys Rev B, 2011, 83: 195131.

[28]

Komsa H P, Krasheninnikov A V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles[J]. Phys Rev B, 2012, 86: 241201.

[29]

Böker T, Severin R, Müller A. Band structure of MoS2, MoSe2, and α-MoTe2:angle-resolved photoelectron spectroscopy and ab initio calculations[J]. Phys Rev B, 2001, 64: 235305.

[30]

Kadantsev E S, Hawrylak P. Electronic structure of a single MoS2 monolayer[J]. Solid State Commun, 2012, 152: 909.

[31]

Chow L, Li H, Tay B K. Oxygen doping of ultrathin two-dimensional molybdenum disulfide[J]. Abstract Booklet ICMAT13-A-3058(M), 2013.

[1]

Geim A K, Novoselov K S. The rise of grapheme[J]. Nature Mater, 2007, 6: 183.

[2]

Lalmi B, Oughaddou H, Enriquez H. Epitaxial growth of a silicene sheet[J]. Appl Phys Lett, 2010, 97: 22310.

[3]

Du Y, Zhuang J, Liu H. Tuning the band gap in silicene by oxidation[J]. ACS Nano, 2014, 8: 10019.

[4]

Jamgotchian H, Colignon Y, Hamzaoui N. Growth of silicene layers on Ag(111):unexpected effect of the substrate temperature[J]. J Phys:Condens Matter, 2012, 24: 172001.

[5]

Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotech, 2012, 7: 699.

[6]

Liao J, Sa B, Zhou J. Design of high-efficiency visible-light photocatalysts for water splitting:MoS2/AlN(GaN) heterostructures[J]. J Phys Chem C, 2014, 118: 17594.

[7]

Wang H, Yu L, Lee Y H. Integrated circuits based on bilayer MoS2 transistors[J]. Nano Lett, 2012, 12: 4674.

[8]

Lee H S, Min S W, Chang Y G. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Lett, 2012, 12: 3695.

[9]

Sarkar D, Liu W, Xie X. MoS2 field-effect transistor for next-generation label-free biosensors[J]. ACS Nano, 2014, 8: 3992.

[10]

Krasnozhon D, Lembke D, Nyffeler C. MoS2 transistors operating at gigahertz frequencies[J]. Nano Lett, 2014, 14: 5905.

[11]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nature Nanotech, 2011, 6: 147.

[12]

Kaasbjerg K, Thygesen K S, Jacobsen K W. Phonon-limited mobility in n-type single-layer MoS2 from first principles[J]. Phys Rev B, 2012, 85: 115317.

[13]

Lopez-Sanchez O, Lembke D, Kayci M. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nat Nanotech, 2013, 8: 497.

[14]

Kam K K, Parkinson B. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides[J]. J Phys Chem, 1982, 86: 463.

[15]

Gmelin handbook of inorganic and organometallic chemistry. 8th ed[J]. Berlin:Springer-Verlag, 1995.

[16]

Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105: 136805.

[17]

Scalise E, Houssa M, Pourtois G. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2[J]. Nano Res, 2012, 5: 43.

[18]

Splendiani A, Sun L, Zhang Y. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10: 1271.

[19]

Ramasubramaniam A, Naveh D, Towe E. Tunable band gaps in bilayer transition-metal dichalcogenides[J]. Phys Rev B, 2011, 84: 205325.

[20]

Huang M, Cho K. Density functional theory study of CO hydrogenation on a MoS2 surface[J]. J Phys Chem C, 2009, 113: 5238.

[21]

Moses P G, Mortensen J J, Lundqvist B I. Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS2[J]. J Chem Phys, 2009, 130: 104709.

[22]

Ataca C, Sahin H, Aktürk E. Mechanical and electronic properties of MoS2 nanoribbons and their defects[J]. J Phys Chem C, 2011, 115: 3934.

[23]

Ma Y, Dai Y, Guo M. Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers[J]. Phys Chem Chem Phys, 2011, 13: 15546.

[24]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. J Comput Mater Sci, 1996, 6: 15.

[25]

Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77: 3865.

[26]

Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[J]. Phys Rev Lett, 1980, 45: 566.

[27]

Klimeš J, Bowler D R, Michaelides A. Van der Waals density functionals applied to solids[J]. Phys Rev B, 2011, 83: 195131.

[28]

Komsa H P, Krasheninnikov A V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles[J]. Phys Rev B, 2012, 86: 241201.

[29]

Böker T, Severin R, Müller A. Band structure of MoS2, MoSe2, and α-MoTe2:angle-resolved photoelectron spectroscopy and ab initio calculations[J]. Phys Rev B, 2001, 64: 235305.

[30]

Kadantsev E S, Hawrylak P. Electronic structure of a single MoS2 monolayer[J]. Solid State Commun, 2012, 152: 909.

[31]

Chow L, Li H, Tay B K. Oxygen doping of ultrathin two-dimensional molybdenum disulfide[J]. Abstract Booklet ICMAT13-A-3058(M), 2013.

[1]

Zhao Youwen, Lü Xiaohong, Dong Zhiyuan, Duan Manlong, Sun Wenrong. Influence of Vacancy and Interstitial on Material Property of Semi-Insulating lnP Single Crystal. J. Semicond., 2007, 28(S1): 175.

[2]

Zhu Xinghua, Zhao Beijun, Zhu Shifu, Jin Yingrong, Xiang Anping, Wei Zhaorong. Growth of PbI2 Crystal with Excessive Pb and Its Characterization. J. Semicond., 2007, 28(6): 898.

[3]

Shuwei Zhang, Xiangbo Zeng. Influence of band gap of p-type hydrogenated nanocrystalline silicon layer on the short-circuit current density in thin-film silicon solar cells. J. Semicond., 2017, 38(11): 114007. doi: 10.1088/1674-4926/38/11/114007

[4]

Jiang Hanqin, Ma Xiangyang, Yang Deren, Que Duanlin. Effect of Vacancy on Nucleation for Oxygen Precipitation in Conventional and Nitrogen-Doped Czochralski Silicon. J. Semicond., 2008, 29(10): 1984.

[5]

Zhang Ruijuan, Yin Haiqing, Wen Jing, Cao Wenbin. Calculation and Fabrication of Photonic Crystal with Diamond Structure. J. Semicond., 2007, 28(S1): 20.

[6]

Liping Qiao, Changchun Chai, Yintang Yang, Xinhai Yu, Chunlei Shi. Strain effects on band structure of wurtzite ZnO: a GGA + U study. J. Semicond., 2014, 35(7): 073004. doi: 10.1088/1674-4926/35/7/073004

[7]

Xuefen Cai, Peng Zhang, Su-Huai Wei. Revisit of the band gaps of rutile SnO2 and TiO2: a first-principles study. J. Semicond., 2019, 40(9): 092101. doi: 10.1088/1674-4926/40/9/092101

[8]

Zhipeng Yuan, Hongbao Cui, Xuefeng Guo. First-principle calculation on mechanical and thermal properties of B2-NiSc with point defects. J. Semicond., 2017, 38(1): 012001. doi: 10.1088/1674-4926/38/1/012001

[9]

Ren Bingyan, Gou Xianfang, Ma Lifen, Li Xudong, Xu Ying, Wang Wenjing. A New Process for Improving Performance of VCSELs. J. Semicond., 2005, 26(12): 2294.

[10]

Utsa Das, Partha P. Pal. ZnO1-xTex and ZnO1-xSx semiconductor alloys as competent materials for opto-electronic and solar cell applications:a comparative analysis. J. Semicond., 2017, 38(8): 082001. doi: 10.1088/1674-4926/38/8/082001

[11]

Dang Suihu, Han Peide, Li Chunxia, Jia Wei, Chi Mei, Liu Xuguang, Xu Bingshe. Band Gaps of Two-Dimensional Photonic Crystal Structure Using InP Films. J. Semicond., 2007, 28(S1): 179.

[12]

Peijiang Niu, Jinliang Yan, Delan Meng. The effects of N-doping and oxygen vacancy on the electronic structure and conductivity of PbTiO3. J. Semicond., 2015, 36(4): 043004. doi: 10.1088/1674-4926/36/4/043004

[13]

Gong Chunjuan, Hu Xiongwei. Large Two-Dimensional Photonic Band-Gaps Designed by Rapid Genetic Algorithms. J. Semicond., 2006, 27(6): 1098.

[14]

Bo Gu. High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems. J. Semicond., 2019, 40(8): 081504. doi: 10.1088/1674-4926/40/8/081504

[15]

Huajun Chen, Changzhao Chen, Yang Li, Xianwen Fang. Monolayer-molybdenum-disulfide-based nano-optomechanical transistor andewline tunable nonlinear responses. J. Semicond., 2016, 37(11): 114004. doi: 10.1088/1674-4926/37/11/114004

[16]

Junyi Zhu . Direct or indirect band gap. J. Semicond., 2019, 40(3): 030202. doi: 10.1088/1674-4926/40/3/030202

[17]

Du Wei, Xu Xingsheng, Han Weihua, Wang Chunxia, Zhang Yang, Yang Fuhua, Chen Hongda. Fabrication of a High Quality Etching Mask for Two-Dimensional Photonic Crystal Structures. J. Semicond., 2006, 27(9): 1640.

[18]

Le Huang, Nengjie Huo, Zhaoqiang Zheng, Huafeng Dong, Jingbo Li. Two-dimensional transition metal dichalcogenides for lead halide perovskites-based photodetectors: band alignment investigation for the case of CsPbBr3/MoSe2. J. Semicond., 2020, 41(5): 052206. doi: 10.1088/1674-4926/41/5/052206

[19]

Zhang Jiashun, Wang Yue, Wu Yuanda, Zhang Xiaoguang, Jiang Ting, An Junming, Li Jianguang, Wang Hongjie, Hu Xiongwei. Light extraction enhancement of SOI-based erbium/oxygen Co-implanted photonic crystal microcavities. J. Semicond., 2011, 32(9): 094004. doi: 10.1088/1674-4926/32/9/094004

[20]

Ma Xiaocui, Liu Wenjun, Zhu Deliang, Cao Peijiang, Jiang Zongzhang, Xiao Huojie. Effects of Oxygen Content on the Crystal Quality of ZnO Films Grown on Si by RF-Magnetron Sputtering. J. Semicond., 2007, 28(S1): 160.

Search

Advanced Search >>

GET CITATION

A. V. Krivosheeva, V. L. Shaposhnikov, V. E. Borisenko, J L. Lazzari, C Waileong, J Gusakova, B. K Tay. Theoretical study of defect impact on two-dimensional MoS2[J]. J. Semicond., 2015, 36(12): 122002. doi: 10.1088/1674-4926/36/12/122002.

Export: BibTex EndNote

Article Metrics

Article views: 1408 Times PDF downloads: 15 Times Cited by: 0 Times

History

Manuscript received: 01 April 2015 Manuscript revised: Online: Published: 01 December 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误