[1] |
Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol, 2008, 3, 270
|
[2] |
Park S, Wang G, Cho B, et al. Flexible molecular-scale electronic devices. Nat Nanotechnol, 2012, 7, 438
|
[3] |
de Arquer F P G, Armin A, Meredith P, et al. Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater, 2017, 2, 16100
|
[4] |
Gong X, Tong M, Xia Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325, 1665
|
[5] |
Qiao H, Yuan J, Xu Z Q, et al. Broadband photodetectors based on graphene–Bi2Te3 heterostructure. ACS Nano, 2015, 9, 1886
|
[6] |
Yuan H, Liu X, Afshinmanesh F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat Nanotechnol, 2015, 10, 707
|
[7] |
Hu W, Cong H, Huang W, et al. Germanium/perovskite heterostructure for high-performance and broadband photodetector from visible to infrared telecommunication band. Light: Sci Appl, 2019, 8, 106
|
[8] |
Eckhardt C, Hummer K, Kresse G. Indirect-to-direct gap transition in strained and unstrained SnxGe1–x alloys. Phys Rev B, 2014, 89, 165201
|
[9] |
Du W, Ghetmiri S A, Conley B R, et al. Competition of optical transitions between direct and indirect bandgaps in Ge1−xSnx. Appl Phys Lett, 2014, 105, 051104
|
[10] |
Gassenq A, Gencarelli F, van Campenhout J, et al. GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. Opt Express, 2012, 20, 27297
|
[11] |
Cong H, Xue C L, Zheng J, et al. Silicon based GeSn p–i–n photodetector for SWIR detection. IEEE Photonics J, 2016, 8, 1
|
[12] |
Su S J, Cheng B W, Xue C L, et al. GeSn p–i–n photodetector for all telecommunication bands detection. Optics Express, 2011, 19, 6400
|
[13] |
Mathews J, Roucka R, Xie J, et al. Extended performance GeSn/Si(100) p–i–n photodetectors for full spectral range telecommunication applications. Appl Phys Lett, 2009, 95, 133506
|
[14] |
Kouvetakis J, Menendez J, Chizmeshya A V G. Tin-based group IV semiconductors: New platforms for opto- and microelectronics on silicon. Annu Rev Mater Res, 2006, 36, 497
|
[15] |
Ke S Y, Ye Y J, Lin S M, et al. Low-temperature oxide-free silicon and germanium wafer bonding based on a sputtered amorphous Ge. Appl Phys Lett, 2018, 112, 041601
|
[16] |
Ke S Y, Ye Y J, Wu J Y, et al. Interface characteristics and electrical transport of Ge/Si heterojunction fabricated by low-temperature wafer bonding. J Phys D, 2018, 51, 265306
|
[17] |
Ke S Y, Lin S M, Ye Y J, et al. Bubble evolution mechanism and stress-induced crystallization in low-temperature silicon wafer bonding based on a thin intermediate amorphous Ge layer. J Phys D, 2017, 50, 405305
|
[18] |
Lin Y, Lee K H, Bao S, et al. High-efficiency normal-incidence vertical p–i–n photodetectors on a germanium-on-insulator platform: Publisher's note. Photonics Res, 2018, 6, 46
|
[19] |
Ghetmiri S A, Du W, Conley B R, et al. Shortwave-infrared photoluminescence from Ge1– xSnx thin films on silicon. J Vac Sci Technol B, 2014, 32, 060601
|
[20] |
Tran H, Du W, Ghetmiri S A, et al. Systematic study of Ge1− xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics. J Appl Phys, 2016, 119, 103106
|
[21] |
Masini C, Calace L, Assanto G, et al. High-performance p–i–n Ge on Si photodetectors for the near infrared: From model to demonstration. IEEE Trans Electron Devices, 2001, 48, 1092
|
[22] |
Rzaev M, Schäffler F, Vdovin V, et al. Misfit dislocation nucleation and multiplication in fully strained SiGe/Si heterostructures under thermal annealing. Mater Sci Semicond Process, 2005, 8, 137
|
[23] |
Humlíček J, Garriga M, Alonso M I, et al. Optical spectra of SixGe1–x alloys. J Appl Phys, 1989, 65, 2827
|
[24] |
Braunstein R, Moore A R, Herman F. Intrinsic optical absorption in germanium-silicon alloys. Phys Rev, 1958, 109, 695
|
[25] |
Choi D, Ge Y S, Harris J S, et al. Low surface roughness and threading dislocation density Ge growth on Si (001). J Cryst Growth, 2008, 310, 4273
|
[26] |
Xia G, Hoyt J L, Canonico M. Si –Ge interdiffusion in strained Si/strained SiGe heterostructures and implications for enhanced mobility metal–oxide–semiconductor field-effect transistors. J Appl Phys, 2007, 101, 044901
|
[27] |
Gavelle M, Bazizi E M, Scheid E, et al. Study of silicon-germanium interdiffusion from pure germanium deposited layers. Mater Sci Eng B, 2008, 154/155, 110
|
[28] |
Luan H, Lim D R, Lee K K, et al. High-quality Ge epilayers on Si with low threading-dislocation densities. Appl Phys Lett, 1999, 75, 2909
|
[29] |
del Alamo J, Swirhun S, Swanson R M. Simultaneous measurement of hole lifetime, hole mobility and bandgap narrowing in heavily doped n-type silicon. Int Electron Devices Meet, 1985, 290
|
[30] |
Kulin S S, Kurtz A D. Effect of dislocations on minority carrier lifetime in germanium. Acta Metall, 1954, 2, 354
|
[31] |
Zhao Y, Wang N, Yu K, et al. High performance silicon-based GeSn p–i–n photodetectors for short-wave infrared application. Chin Phys B, 2019, 28, 128501
|
[32] |
Kasai I, Hettich H L, Lawrence S L, et al. Wideband anti-reflection coating for indium antimonide photodetector device. European Patent, EP0585055, 1997
|
[33] |
Chang C, Sharma Y D, Kim Y, et al. A surface plasmon enhanced infrared photodetector based on InAs quantum dots. Nano Lett, 2010, 10, 1704
|
[34] |
Yang J K, Seo M K, Hwang I K, et al. Polarization-selective resonant photonic crystal photodetector. Appl Phys Lett, 2008, 93, 211103
|
[35] |
Zhu T F, Liu Z C, Liu Z C, et al. Fabrication of monolithic diamond photodetector with microlenses. Opt Express, 2017, 25, 31586
|
[36] |
Zhong H, Guo A R, Guo G H, et al. The enhanced light absorptance and device application of nanostructured black silicon fabricated by metal-assisted chemical etching. Nanoscale Res Lett, 2016, 11, 1
|