J. Semicond. > Volume 36 > Issue 12 > Article Number: 122001

Variable range hopping conduction in n-CdSe samples at very low temperature

M Errai 1, , A El Kaaouachi 1, and H El Idrissi 2,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: We reanalyzed experimental data already published in Friedman J R, Zhang Y, Dai P, et al. Phys Rev B, 1996, 53(15):9528. Variable range hopping(VRH) conduction in the insulating three-dimensional n-CdSe samples has been studied over the entire temperature range from 0.03 to 1 K. In the absence of a magnetic field, the low temperature conductivity σ of the three samples(A, B and C) obeys the Mott VRH conduction with an appropriate temperature dependence in the prefactor(σ=σ0 exp[-(T0/T)p with p≈0.25). This behavior can be explained by a VRH model where the transport occurs by hopping between localized states in the vicinity of the Fermi level, EF, without creation of the Coulomb gap(CG). On the contrary, no Efros-Shklovskii VRH is observed, suggesting that the density is constant in the vicinity of the EF.

Key words: n-CdSe sampleslow temperaturevariable range hoppingdensity of state

Abstract: We reanalyzed experimental data already published in Friedman J R, Zhang Y, Dai P, et al. Phys Rev B, 1996, 53(15):9528. Variable range hopping(VRH) conduction in the insulating three-dimensional n-CdSe samples has been studied over the entire temperature range from 0.03 to 1 K. In the absence of a magnetic field, the low temperature conductivity σ of the three samples(A, B and C) obeys the Mott VRH conduction with an appropriate temperature dependence in the prefactor(σ=σ0 exp[-(T0/T)p with p≈0.25). This behavior can be explained by a VRH model where the transport occurs by hopping between localized states in the vicinity of the Fermi level, EF, without creation of the Coulomb gap(CG). On the contrary, no Efros-Shklovskii VRH is observed, suggesting that the density is constant in the vicinity of the EF.

Key words: n-CdSe sampleslow temperaturevariable range hoppingdensity of state



References:

[1]

Mott N F. Conduction in glasses containing transition metal ions[J]. J Non-Cryst Solids, 1968, 1: 1.

[2]

Mott N F. Metal-insulator transitions[J]. London:Taylor and Francis, 1974.

[3]

Shklovskii B I, Efros A L. Electronic properties of doped semiconductors[J]. Berlin:Springer, 1984.

[4]

Efros A L, Shklovskii B I. Coulomb gap and low-temperature conductivity of disordered systems[J]. J Phys C, 1975, 8.

[5]

Fogler M M, Teber S, Shklovskii B I. Variable-range hopping in quasi-one-dimensional electron crystals[J]. Phys Rev B, 2004, 69: 035413.

[6]

Errai M, El Kaaouachi A, El Idrissi H. Hopping conduction in amorphous silicon-chromium films at very low temperature[J]. AIP Conf Proc, 2014, 1574: 291.

[7]

Errai M, El Kaaouachi A, Narjis A. Crossover from Efros-Shklovskii to Mott variable range hopping in amorphous thin NixSi1-x films[J]. Chinese Journal of Physics, 2014, 52: 251.

[8]

El Kaaouachi A, Abdia R, Nafidi A. Positive magnetoresistance in the variable range hopping regime in CdSe[J]. Physica E, 2006, 32: 419.

[9]

Abdia R, El Kaaouachi A, Nafidi A. Variable range hopping conductivity and negative magnetoresistance in n-type InP semiconductor[J]. Solid-State Electron, 2009, 53: 469.

[10]

Errai M, El Kaaouachi A, El Idrissi H. Electrical properties of 70Ge:Ga near the metal-insulator transition[J]. Journal of Semiconductors, 2015, 36(6): 062001.

[11]

Narjis A, El Kaaouachi A, Limouny L. Study of insulating electrical conductivity in hydrogenated amorphous silicon-nickel alloys at very low temperature[J]. Physica B, 2011, 406: 4155.

[12]

Vekilov Y K, Mukovskii Y M. Variable range hopping conductivity in manganites[J]. Solid State Commun, 2012, 152: 1139.

[13]

Adkins C J. Conduction in granular metals-variable-range hopping in a Coulomb gap[J]. Phys Condens Matter, 1989, 1: 1253.

[14]

Zabrodskii A G, Zinoveva K N. Low-temperature conductivity and metal-insulator transition in compensate n-Ge[J]. Soviet Physics-JETP, 1984, 59: 425.

[15]

Friedman J R, Zhang Y, Dai P. Magnetic-field-induced crossover from Mott variable-range hopping to weakly insulating behavior[J]. Phys Rev B, 1996, 53: 9528.

[16]

Waller D. Operations management:a supply chain approach[J]. Cengage Learning Business Press, 2003.

[17]

Khan A, Hildreth W B. Case studies in public budgeting and financial management[J]. New York, NY:Marcel Dekker, 2003.

[18]

Rosenbaum R, Murphy T, Palm E. Magnetoresistance of insulating amorphous NixSi1-x films exhibiting Mott variable-range hopping[J]. Phys Rev B, 2001, 63: 094426.

[19]

Makise K, Hidaka K, Ezaki S. Metal-insulator transitions in IZO, IGZO, and ITZO films[J]. J Appl Phys, 2014, 116: 153703.

[20]

Vaziri M. Low-temperature conductivity of epitaxial ZnSe in the impurity band regime[J]. Appl Phys Lett, 1994, 65: 2568.

[21]

Shekhar S, Prasad V, Subramanyam S V. Anomalous Efros-Shklovskii variable range hopping conduction in composites of polymer and iron carbide nanoparticles embedded in carbon[J]. Phys Lett A, 2006, 360: 390.

[22]

Mitin V F, Kholevchuk V V, Kolodych B P. Ge-on-GaAs film resistance thermometers:low-temperature conduction and magnetoresistance[J]. Cryogenics, 2011, 51(1): 68.

[1]

Mott N F. Conduction in glasses containing transition metal ions[J]. J Non-Cryst Solids, 1968, 1: 1.

[2]

Mott N F. Metal-insulator transitions[J]. London:Taylor and Francis, 1974.

[3]

Shklovskii B I, Efros A L. Electronic properties of doped semiconductors[J]. Berlin:Springer, 1984.

[4]

Efros A L, Shklovskii B I. Coulomb gap and low-temperature conductivity of disordered systems[J]. J Phys C, 1975, 8.

[5]

Fogler M M, Teber S, Shklovskii B I. Variable-range hopping in quasi-one-dimensional electron crystals[J]. Phys Rev B, 2004, 69: 035413.

[6]

Errai M, El Kaaouachi A, El Idrissi H. Hopping conduction in amorphous silicon-chromium films at very low temperature[J]. AIP Conf Proc, 2014, 1574: 291.

[7]

Errai M, El Kaaouachi A, Narjis A. Crossover from Efros-Shklovskii to Mott variable range hopping in amorphous thin NixSi1-x films[J]. Chinese Journal of Physics, 2014, 52: 251.

[8]

El Kaaouachi A, Abdia R, Nafidi A. Positive magnetoresistance in the variable range hopping regime in CdSe[J]. Physica E, 2006, 32: 419.

[9]

Abdia R, El Kaaouachi A, Nafidi A. Variable range hopping conductivity and negative magnetoresistance in n-type InP semiconductor[J]. Solid-State Electron, 2009, 53: 469.

[10]

Errai M, El Kaaouachi A, El Idrissi H. Electrical properties of 70Ge:Ga near the metal-insulator transition[J]. Journal of Semiconductors, 2015, 36(6): 062001.

[11]

Narjis A, El Kaaouachi A, Limouny L. Study of insulating electrical conductivity in hydrogenated amorphous silicon-nickel alloys at very low temperature[J]. Physica B, 2011, 406: 4155.

[12]

Vekilov Y K, Mukovskii Y M. Variable range hopping conductivity in manganites[J]. Solid State Commun, 2012, 152: 1139.

[13]

Adkins C J. Conduction in granular metals-variable-range hopping in a Coulomb gap[J]. Phys Condens Matter, 1989, 1: 1253.

[14]

Zabrodskii A G, Zinoveva K N. Low-temperature conductivity and metal-insulator transition in compensate n-Ge[J]. Soviet Physics-JETP, 1984, 59: 425.

[15]

Friedman J R, Zhang Y, Dai P. Magnetic-field-induced crossover from Mott variable-range hopping to weakly insulating behavior[J]. Phys Rev B, 1996, 53: 9528.

[16]

Waller D. Operations management:a supply chain approach[J]. Cengage Learning Business Press, 2003.

[17]

Khan A, Hildreth W B. Case studies in public budgeting and financial management[J]. New York, NY:Marcel Dekker, 2003.

[18]

Rosenbaum R, Murphy T, Palm E. Magnetoresistance of insulating amorphous NixSi1-x films exhibiting Mott variable-range hopping[J]. Phys Rev B, 2001, 63: 094426.

[19]

Makise K, Hidaka K, Ezaki S. Metal-insulator transitions in IZO, IGZO, and ITZO films[J]. J Appl Phys, 2014, 116: 153703.

[20]

Vaziri M. Low-temperature conductivity of epitaxial ZnSe in the impurity band regime[J]. Appl Phys Lett, 1994, 65: 2568.

[21]

Shekhar S, Prasad V, Subramanyam S V. Anomalous Efros-Shklovskii variable range hopping conduction in composites of polymer and iron carbide nanoparticles embedded in carbon[J]. Phys Lett A, 2006, 360: 390.

[22]

Mitin V F, Kholevchuk V V, Kolodych B P. Ge-on-GaAs film resistance thermometers:low-temperature conduction and magnetoresistance[J]. Cryogenics, 2011, 51(1): 68.

[1]

S. Dlimi, A. El kaaouachi, L. Limouny, B. A. Hammou. A crossover from Efros–Shklovskii hopping to activated transport in a GaAs two-dimensional hole system at low temperatures. J. Semicond., 2020, 41(12): -1.

[2]

Jia Kan, Sun Weifeng, Shi Longxing. A sub-circuit MOSFET model with a wide temperature range including cryogenic temperature. J. Semicond., 2011, 32(6): 064002. doi: 10.1088/1674-4926/32/6/064002

[3]

P. Dalapati, N.B. Manik, A.N. Basu. Influence of temperature on tunneling-enhanced recombination in Si based p-i-n photodiodes. J. Semicond., 2014, 35(8): 082001. doi: 10.1088/1674-4926/35/8/082001

[4]

P. Dalapati, N. B. Manik, A. N. Basu. Effect of temperature on the intensity and carrier lifetime of an AlGaAs based red light emitting diode. J. Semicond., 2013, 34(9): 092001. doi: 10.1088/1674-4926/34/9/092001

[5]

M Errai, A El Kaaouachi, H El Idrissi. Electrical properties of Ge:Ga near the metal-insulator transition. J. Semicond., 2015, 36(6): 062001. doi: 10.1088/1674-4926/36/6/062001

[6]

Hao Chen, Xiuming Dou, Kun Ding, Baoquan Sun. Electrically driven uniaxial stress device for tuning in situ semiconductor quantum dot symmetry and exciton emission in cryostat. J. Semicond., 2019, 40(7): 072901. doi: 10.1088/1674-4926/40/7/072901

[7]

Xia Jiaozhen, Lu Hui, Wang Pu, Xu Xiaofeng, Du Minggui. Effects of Heat Treatment on the Varistor Performance of ZnO Thin Films Deposited at Low Temperatures. J. Semicond., 2006, 27(10): 1763.

[8]

Wang Wenyan, Qin Fuwen, Wu Aimin, Song Shiwei, Liu Ruixian, Jiang Xin, Xu Yin, Gu Biao. Influences of N2 Flow Rate on the Crystalline Characteristics of GaN Films Deposited on Glass Substrate at Low Temperature. J. Semicond., 2008, 29(12): 2376.

[9]

Jiahong Zhang, Qingquan Liu, Yixian Ge, Fang Gu, Min Li, Xiaoli Mao, Hongxia Cao. Extraction of interface state density and resistivity of suspended p-type silicon nanobridges. J. Semicond., 2013, 34(5): 052002. doi: 10.1088/1674-4926/34/5/052002

[10]

Li Panpan, Li Hongjian, Zhang Yiyun, Li Zhicong, Liang Meng, Li Jing, Wang Guohong. Improved ESD characteristic of GaN-based blue light-emitting diodes with a low temperature n-type GaN insertion layer. J. Semicond., 2012, 33(10): 104002. doi: 10.1088/1674-4926/33/10/104002

[11]

Li Yani, Yang Yintang, Zhu Zhangming. Low-power variable frequency PFC converters. J. Semicond., 2010, 31(1): 015008. doi: 10.1088/1674-4926/31/1/015008

[12]

Liang Meng, Wang Guohong, Li Hongjan, Li Zhicong, Yao Ran, Wang Bing, Li Panpan, Li Jing, Yi Xiaoyan, Wang Junxi, Li Jinmin. Low threading dislocation density in GaN films grown on patterned sapphire substrates. J. Semicond., 2012, 33(11): 113002. doi: 10.1088/1674-4926/33/11/113002

[13]

Shangbin Ye, Jiajia Zhang, Yicheng Zhang, Yongtao Yao. Temperature-variable high-frequency dynamic modeling of PIN diode. J. Semicond., 2016, 37(4): 044010. doi: 10.1088/1674-4926/37/4/044010

[14]

Zhigang Wang, Bo Zhang, Zhaoji Li. Analysis of OFF-state and ON-state performance in a silicon-on-insulator power MOSFET with a low-k dielectric trench. J. Semicond., 2013, 34(7): 074006. doi: 10.1088/1674-4926/34/7/074006

[15]

Yang Jiang, Min Tian, Huang Long, Jie Zhao, Shuai Chen, Huicai Zhong. Metal-to-metal antifuse with low programming voltage and low on-state resistance. J. Semicond., 2016, 37(7): 074008. doi: 10.1088/1674-4926/37/7/074008

[16]

Wei Xin, Yuwei Zhao, Chao Han, Eerdunchaolu. Magnetic field and temperature dependence of the properties of the ground state of the strong-coupling bound magnetopolaron in quantum rods with hydrogenic impurity. J. Semicond., 2013, 34(5): 052001. doi: 10.1088/1674-4926/34/5/052001

[17]

Jian Qin, Ruohe Yao. Modeling of current-voltage characteristics for dual-gate amorphous silicon thin-film transistors considering deep Gaussian density-of-state distribution. J. Semicond., 2015, 36(12): 124005. doi: 10.1088/1674-4926/36/12/124005

[18]

Chen Danfeng, Li Wei, Li Ning, Ren Junyan. A low-spurious fast-hopping MB-OFDM UWB synthesizer. J. Semicond., 2010, 31(6): 065003. doi: 10.1088/1674-4926/31/6/065003

[19]

Guo Weling, Jia Xuejiao, Yin Fei, Cui Bifeng, Gao Wei, Liu Ying, Yan Weiwei. Characteristics of high power LEDs at high and low temperature. J. Semicond., 2011, 32(4): 044007. doi: 10.1088/1674-4926/32/4/044007

[20]

Chang Peng, Liu Su, Chen Rongbo, Tang Ying, Han Genliang. Low Temperature Synthesis and Optical Properties of ZnO Nanowires. J. Semicond., 2007, 28(10): 1503.

Search

Advanced Search >>

GET CITATION

M Errai, A E Kaaoouachi, H E Idrissi. Variable range hopping conduction in n-CdSe samples at very low temperature[J]. J. Semicond., 2015, 36(12): 122001. doi: 10.1088/1674-4926/36/12/122001.

Export: BibTex EndNote

Article Metrics

Article views: 1320 Times PDF downloads: 47 Times Cited by: 0 Times

History

Manuscript received: 06 April 2015 Manuscript revised: Online: Published: 01 December 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误