J. Semicond. > Volume 40 > Issue 3 > Article Number: 032802

Numerical simulation of UV LEDs with GaN and BGaN single quantum well

Asma Belaid , and Abdelkader Hamdoune

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: The objective of this work is to simulate a single quantum well ultraviolet light emitting diode (LED) based on AlGaN/GaN/AlGaN and AlGaN/BGaN/AlGaN, by using TCAD Silvaco simulator. The first structure has a GaN quantum well taken between two layers, of n-AlGaN and p-AlGaN. The second one has a BGaN quantum well instead of GaN. We fix the concentration of the boron in BGaN to only 1% and we vary the thickness of GaN and BGaN quantum well layer from 7 to 20 nm, for the two structures. As results, we obtain respectively for GaN-LED and BGaN-LED, a maximum current of 0.52 and 0.27 mA, a maximum power spectral density of 1.935 and 6.7 W cm−1 eV−1, a maximum spontaneous emission of 3.34 × 1028 and 3.43 × 1028 s−1 cm−3 eV−1, and a maximum Light output power of 0.56 and 0.89 mW.

Key words: gallium nitride (GaN)aluminum gallium nitride (AlGaN)boron gallium nitride (BGaN)UV light emitting diode (LED)

Abstract: The objective of this work is to simulate a single quantum well ultraviolet light emitting diode (LED) based on AlGaN/GaN/AlGaN and AlGaN/BGaN/AlGaN, by using TCAD Silvaco simulator. The first structure has a GaN quantum well taken between two layers, of n-AlGaN and p-AlGaN. The second one has a BGaN quantum well instead of GaN. We fix the concentration of the boron in BGaN to only 1% and we vary the thickness of GaN and BGaN quantum well layer from 7 to 20 nm, for the two structures. As results, we obtain respectively for GaN-LED and BGaN-LED, a maximum current of 0.52 and 0.27 mA, a maximum power spectral density of 1.935 and 6.7 W cm−1 eV−1, a maximum spontaneous emission of 3.34 × 1028 and 3.43 × 1028 s−1 cm−3 eV−1, and a maximum Light output power of 0.56 and 0.89 mW.

Key words: gallium nitride (GaN)aluminum gallium nitride (AlGaN)boron gallium nitride (BGaN)UV light emitting diode (LED)



References:

[1]

Hamdoune A. Elaboration du nitrure de gallium, étude de ses propriétés et applications. Thesis of Doctorate, University of Abou-Bakr Belkaid, Tlemcen, Algeria, 2006

[2]

Nakamura S. III-V nitride based light-emitting devices. Solid State Communications, 1997. 102: 237

[3]

Masui H, Nakamura S, DenBaars S P, et al. Nonpolar and semipolar III-nitride light-emitting diodes: achievements and challenges. IEEE Trans Electron Devices, 2010, 57: 88

[4]

Hu H P, Zhou S J, Liu X T, et al. Effects of GaN/AlGaN/sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes. J Scientific Reports, 2017, 7, 44627

[5]

Kneissl M, Kolbe T, Chua C, et al. Advances in group III-nitride-based deep UV light-emitting diode technology. J Semicond Sci Technol 2011, 26 , 014036

[6]

Kneissl M, Rass J. III nitride ultraviolet emitters. Springer Series in Materials Science 2016, 227, 1

[7]

Khan A, Balakrishnan K, Katona T. Ultraviolet light-emitting diodes based on group three nitrides. J Nat Photonics 2008, 2, 77

[8]

Nakamura S, Krames M R. History of gallium-nitride-based light-emitting diodes for illumination. Proc IEEE, 2013, 101(10), 2211

[9]

Verzellesi G , Saguatti D, Meneghini M, et al. Efficiency droop in InGaN/GaN blue light-emitting diodes: physic mechanisms remedies. J Appl Phys 2013, 114(7), 071101.

[10]

Yang W, Wang W, Lin Y, et al. Deposition of nonpolar mplane InGaN/GaN multiple quantum wells on LiGaO+(100) substrates. J Mater Chem C 2014, 2(5), 801

[11]

Schubert M F, Xu J, Kim J K, et al. Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl Phys Lett. 2008, 93(4), 041102.

[12]

Lin Z T, Wang H Y, Wang W L, et al. Employing low-temperature barriers to achieve strain-relaxed and high-performance GaN-based LEDs. J Opt Express, 2016, 24, 11886.

[13]

Hirayama H, Fujikawa S, Noguchi N, et al. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. J Phys Status Solidi A, 2009, 206, 1176

[14]

Takano T, Fujikawa S, Kondo Y, et al. Remarkable improvement in output power for an InAlGaN based ultraviolet LED by improving the crystalline quality of AlN/AlGaN templates. J Phys Status Solidi C, 2008, 5, 2102

[15]

Lin Z T, Wang H T, Lin Y H, et al. Stress management on underlying GaN-based epitaxial films: A new vision for achieving high-performance LEDs on Si substrates. J Appl Phys, 2017, 122, 204503.

[16]

Meel K, Mahala P, Singh S. Design and fabrication of multi quantum well based GaN/InGaN blue LED. IOP Conf Ser: Mater Sci Eng, 2018, 331, 012008

[17]

Gautier S, Patriarche G, Moudakir T. Deep structural analysis of novel BGaN material layers grown by MOVPE. J Cryst Growth 2011, 315, 288

[18]

Pease R S. An X-ray study of boron nitride. Acta Crystallogr. 1952, 5, 356.

[19]

Herold A, Marzluf B, Perio P, et al. Inorganic reactions and methods. Formation of Ceramics Seances Acad Sci 1958, 246, 1866

[20]

Thomas J, Weston N E, O’connor T, et al. Boron nitride, thermal transformation to ordered-layer-lattice boron nitride. J Am Chem Soc 1962, 84, 4619.

[21]

Wentorf R Jr. Cubic form of boron nitride. J Chem Phys, 1957, 26, 956.

[22]

Wentorf R Jr. Synthesis of the cubic form of boron nitride. J Chem Phys. 1961, 34, 809.

[23]

Tsao J Y, Chowdhury S, Hollis M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges. J Adv Electron Mater. 2018, 4, 1600501

[24]

Zhang X. Thin solid films electronic and photonic applications, 2013, 544, 2.

[25]

Dreyer C E, Lyons J L, Janotti A, et al. Band alignments and polarization properties of BN polymorphs. Appl Phys Express, 2014, 7, 031001.

[26]

Gunning B P, Moseley M W, Koleske D D, et al. Phase degradation in BxGa1-xN films grown at low temperature by metalorganic vapor phase epitaxy. J Cryst Growth, 2017, 464, 190.

[27]

Ougazzaden A, Gautier S, Moudakir T. Band gap bowing in BGaN thin films. Appl Phys Lett, 2008, 93, 083118

[28]

Atlas User’s Manual; Silvaco International Inc. Santa Clara, CA, USA. Version: 2012

[29]

Lachebi A, Abid H, DrizMand Al-Douri Y. First-principles study of cubic BxGa1–xN alloys. Int J Nanoelectron, 2008, 1, 81

[30]

Schubert E F. Light-emitting diodes. 2nd ed. Cambridge University Press, 2006, 432

[31]

Ambacher O, Dimitrov R, Stutzmann M, et al. Role of spontaneous and piezoelectric polarization induced effects in group-III nitride based heterostructures and devices. J Phys Stat Sol, 1999, 216, 381

[1]

Hamdoune A. Elaboration du nitrure de gallium, étude de ses propriétés et applications. Thesis of Doctorate, University of Abou-Bakr Belkaid, Tlemcen, Algeria, 2006

[2]

Nakamura S. III-V nitride based light-emitting devices. Solid State Communications, 1997. 102: 237

[3]

Masui H, Nakamura S, DenBaars S P, et al. Nonpolar and semipolar III-nitride light-emitting diodes: achievements and challenges. IEEE Trans Electron Devices, 2010, 57: 88

[4]

Hu H P, Zhou S J, Liu X T, et al. Effects of GaN/AlGaN/sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes. J Scientific Reports, 2017, 7, 44627

[5]

Kneissl M, Kolbe T, Chua C, et al. Advances in group III-nitride-based deep UV light-emitting diode technology. J Semicond Sci Technol 2011, 26 , 014036

[6]

Kneissl M, Rass J. III nitride ultraviolet emitters. Springer Series in Materials Science 2016, 227, 1

[7]

Khan A, Balakrishnan K, Katona T. Ultraviolet light-emitting diodes based on group three nitrides. J Nat Photonics 2008, 2, 77

[8]

Nakamura S, Krames M R. History of gallium-nitride-based light-emitting diodes for illumination. Proc IEEE, 2013, 101(10), 2211

[9]

Verzellesi G , Saguatti D, Meneghini M, et al. Efficiency droop in InGaN/GaN blue light-emitting diodes: physic mechanisms remedies. J Appl Phys 2013, 114(7), 071101.

[10]

Yang W, Wang W, Lin Y, et al. Deposition of nonpolar mplane InGaN/GaN multiple quantum wells on LiGaO+(100) substrates. J Mater Chem C 2014, 2(5), 801

[11]

Schubert M F, Xu J, Kim J K, et al. Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl Phys Lett. 2008, 93(4), 041102.

[12]

Lin Z T, Wang H Y, Wang W L, et al. Employing low-temperature barriers to achieve strain-relaxed and high-performance GaN-based LEDs. J Opt Express, 2016, 24, 11886.

[13]

Hirayama H, Fujikawa S, Noguchi N, et al. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. J Phys Status Solidi A, 2009, 206, 1176

[14]

Takano T, Fujikawa S, Kondo Y, et al. Remarkable improvement in output power for an InAlGaN based ultraviolet LED by improving the crystalline quality of AlN/AlGaN templates. J Phys Status Solidi C, 2008, 5, 2102

[15]

Lin Z T, Wang H T, Lin Y H, et al. Stress management on underlying GaN-based epitaxial films: A new vision for achieving high-performance LEDs on Si substrates. J Appl Phys, 2017, 122, 204503.

[16]

Meel K, Mahala P, Singh S. Design and fabrication of multi quantum well based GaN/InGaN blue LED. IOP Conf Ser: Mater Sci Eng, 2018, 331, 012008

[17]

Gautier S, Patriarche G, Moudakir T. Deep structural analysis of novel BGaN material layers grown by MOVPE. J Cryst Growth 2011, 315, 288

[18]

Pease R S. An X-ray study of boron nitride. Acta Crystallogr. 1952, 5, 356.

[19]

Herold A, Marzluf B, Perio P, et al. Inorganic reactions and methods. Formation of Ceramics Seances Acad Sci 1958, 246, 1866

[20]

Thomas J, Weston N E, O’connor T, et al. Boron nitride, thermal transformation to ordered-layer-lattice boron nitride. J Am Chem Soc 1962, 84, 4619.

[21]

Wentorf R Jr. Cubic form of boron nitride. J Chem Phys, 1957, 26, 956.

[22]

Wentorf R Jr. Synthesis of the cubic form of boron nitride. J Chem Phys. 1961, 34, 809.

[23]

Tsao J Y, Chowdhury S, Hollis M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges. J Adv Electron Mater. 2018, 4, 1600501

[24]

Zhang X. Thin solid films electronic and photonic applications, 2013, 544, 2.

[25]

Dreyer C E, Lyons J L, Janotti A, et al. Band alignments and polarization properties of BN polymorphs. Appl Phys Express, 2014, 7, 031001.

[26]

Gunning B P, Moseley M W, Koleske D D, et al. Phase degradation in BxGa1-xN films grown at low temperature by metalorganic vapor phase epitaxy. J Cryst Growth, 2017, 464, 190.

[27]

Ougazzaden A, Gautier S, Moudakir T. Band gap bowing in BGaN thin films. Appl Phys Lett, 2008, 93, 083118

[28]

Atlas User’s Manual; Silvaco International Inc. Santa Clara, CA, USA. Version: 2012

[29]

Lachebi A, Abid H, DrizMand Al-Douri Y. First-principles study of cubic BxGa1–xN alloys. Int J Nanoelectron, 2008, 1, 81

[30]

Schubert E F. Light-emitting diodes. 2nd ed. Cambridge University Press, 2006, 432

[31]

Ambacher O, Dimitrov R, Stutzmann M, et al. Role of spontaneous and piezoelectric polarization induced effects in group-III nitride based heterostructures and devices. J Phys Stat Sol, 1999, 216, 381

[1]

Liming Gu, Wenquan Che, Fan-Hsiu Huang, Hsien-Chin Chiu. A high power active circulator using GaN MMIC power amplifiers. J. Semicond., 2014, 35(11): 115003. doi: 10.1088/1674-4926/35/11/115003

[2]

Zhang Wei, Hao Qiuyan, Jing Weina, Liu Caichi, Feng Yuchun. Epitaxial Lateral Overgrowth of Gallium Nitride on Sapphire. J. Semicond., 2007, 28(S1): 33.

[3]

Jun Hu, Hongyuan Wei, Shaoyan Yang, Chengming Li, Huijie Li, Xianglin Liu, Lianshan Wang, Zhanguo Wang. Hydride vapor phase epitaxy for gallium nitride substrate. J. Semicond., 2019, 40(10): 101801. doi: 10.1088/1674-4926/40/10/101801

[4]

Pranati Panda, Gananath Dash. Prospects of gallium nitride double drift region mixed tunneling avalanche transit time diodes for operation in F, Y and THz bands. J. Semicond., 2016, 37(5): 054001. doi: 10.1088/1674-4926/37/5/054001

[5]

Wang Xinjian, Song Hang, Li Zhiming, Jiang Hong, Li Dabing, Miao Guoqing, Chen Yiren, Sun Xiaojuan. An aluminum nitride photoconductor for X-ray detection. J. Semicond., 2012, 33(10): 103002. doi: 10.1088/1674-4926/33/10/103002

[6]

Deng Jinxiang, Chen Hao, Liu Junkai, Tian Ling, Zhang Yan, Zhou Tao, He Bin, Chen Guanghua, Wang Bo, Yan Hui. Deposition and Ion Implantation of Boron Nitride Film. J. Semicond., 2006, 27(S1): 127.

[7]

Yunhong Hou, Meng Zhang, Guowei Han, Chaowei Si, Yongmei Zhao, Jin Ning. A review:aluminum nitride MEMS contour-mode resonator. J. Semicond., 2016, 37(10): 101001. doi: 10.1088/1674-4926/37/10/101001

[8]

Haolin Wang, Yajuan Zhao, Yong Xie, Xiaohua Ma, Xingwang Zhang. Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond., 2017, 38(3): 031003. doi: 10.1088/1674-4926/38/3/031003

[9]

Liu Hongxia, Zhang Heming, Song Jiuxu, Zhang Zhiyong. Electronic structures of an (8, 0) boron nitride/carbon nanotube heterojunction. J. Semicond., 2010, 31(1): 013001. doi: 10.1088/1674-4926/31/1/013001

[10]

Song Jiuxu, Yang Yintang, Liu Hongxia, Guo Lixin. Negative differential resistance in an (8, 0) carbon/boron nitride nanotube heterojunction. J. Semicond., 2011, 32(4): 042003. doi: 10.1088/1674-4926/32/4/042003

[11]

Junmei Li, Wei Guo, Moheb Sheikhi, Hongwei Li, Baoxue Bo, Jichun Ye. Lateral polarity control of III-nitride thin film and application in GaN Schottky barrier diode. J. Semicond., 2018, 39(5): 053003. doi: 10.1088/1674-4926/39/5/053003

[12]

Zhang Renping, Yan Wei, Wang Xiaoliang, Yang Fuhua. Fabrication and characterization of high performance AlGaN/GaN HEMTs on sapphire with silicon nitride passivation. J. Semicond., 2011, 32(6): 064001. doi: 10.1088/1674-4926/32/6/064001

[13]

Xutang Tao. Bulk gallium oxide single crystal growth. J. Semicond., 2019, 40(1): 010401. doi: 10.1088/1674-4926/40/1/010401

[14]

Yue Hao. Gallium oxide: promise to provide more efficient life. J. Semicond., 2019, 40(1): 010301. doi: 10.1088/1674-4926/40/1/010301

[15]

Khushnuma Asghar, D. Das. Effect of polishing parameters on abrasive free chemical mechanical planarization of semi-polar(11$\bar{2}$2) aluminum nitride surface. J. Semicond., 2016, 37(3): 036001. doi: 10.1088/1674-4926/37/3/036001

[16]

Kaiwu Luo, Lingling Wang, Quan Li, Tong Chen, Liang Xu. First-principles calculations of half-metallic ferromagnetism in zigzag boron-nitride nanoribbons jointed with a single Fe-chain. J. Semicond., 2015, 36(8): 082003. doi: 10.1088/1674-4926/36/8/082005

[17]

Hao Yue, Zhang Jinfeng, Shen Bo, Liu Xinyu. Progress in Group III nitride semiconductor electronic devices. J. Semicond., 2012, 33(8): 081001. doi: 10.1088/1674-4926/33/8/081001

[18]

Song Qinglin, Xia Shanhong, Chen Shaofeng, Zhang Jiangang. Thermal Characteristics of silicon nitride Thin membrane. J. Semicond., 2003, 24(S1): 47.

[19]

Hong Zhou, Jincheng Zhang, Chunfu Zhang, Qian Feng, Shenglei Zhao, Peijun Ma, Yue Hao. A review of the most recent progresses of state-of-art gallium oxide power devices. J. Semicond., 2019, 40(1): 011803. doi: 10.1088/1674-4926/40/1/011803

[20]

Yinnü Zhao, Jinliang Yan. First-principles study of n-type tin/fluorine co-doped beta-gallium oxides. J. Semicond., 2015, 36(8): 082004. doi: 10.1088/1674-4926/36/8/082004

Search

Advanced Search >>

GET CITATION

A Belaid, A Hamdoune, Numerical simulation of UV LEDs with GaN and BGaN single quantum well[J]. J. Semicond., 2019, 40(3): 032802. doi: 10.1088/1674-4926/40/3/032802.

Export: BibTex EndNote

Article Metrics

Article views: 532 Times PDF downloads: 70 Times Cited by: 0 Times

History

Manuscript received: 04 May 2018 Manuscript revised: 08 June 2018 Online: Accepted Manuscript: 11 January 2019 Uncorrected proof: 18 January 2019 Published: 01 March 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误