J. Semicond. > Volume 38 > Issue 12 > Article Number: 123002

Fabrication and modeling of multi-layer metal–insulator-metal capacitors

R Karthik , and A Akshaykranth

+ Author Affiliations + Find other works by these authors

PDF

Abstract: This paper presents the fabrication and modeling for capacitance–voltage characteristics of multi-layer metal–insulator–metal capacitors. It is observed that, due the applied electric field, the effective dielectric constant of the stack was increased due to the accumulation of charges at the interface of high-to-low conductance materials. It is observed that the Maxwell–Wagner polarization is dominant at low frequencies (<10 kHz). By introducing carrier tunneling probability of the dielectric stack, the model presented in this paper shows a good agreement with experimental results. The presented model indicates that the nonlinearity can be suppressed by choosing the similar permittivity dielectric materials for fabrication of multilayer metal insulator metal capacitors.

Key words: anodic oxidationdielectrichigh-kmulti-layercapacitance-voltageMaxwell-Wagnercapacitor

Abstract: This paper presents the fabrication and modeling for capacitance–voltage characteristics of multi-layer metal–insulator–metal capacitors. It is observed that, due the applied electric field, the effective dielectric constant of the stack was increased due to the accumulation of charges at the interface of high-to-low conductance materials. It is observed that the Maxwell–Wagner polarization is dominant at low frequencies (<10 kHz). By introducing carrier tunneling probability of the dielectric stack, the model presented in this paper shows a good agreement with experimental results. The presented model indicates that the nonlinearity can be suppressed by choosing the similar permittivity dielectric materials for fabrication of multilayer metal insulator metal capacitors.

Key words: anodic oxidationdielectrichigh-kmulti-layercapacitance-voltageMaxwell-Wagnercapacitor



References:

[1]

He Z X, Daley D, Bolam R. High and low density complimentary MIM capacitors fabricated simultaneously in advanced RFCMOS and BiCMOS technologies[J]. IEEE Bipolar/BiCMOS Circuits Tech Meet, 2008: 212.

[2]

Ding S J, Zhu C X, Li M F. Atomic-layer-deposited Al2O3-HfO2-Al2O3 dielectrics for metal-insulator-metal capacitor applications[J]. Appl Phys Lett, 2005, 87: 053501. doi: 10.1063/1.2005397

[3]

Ding S J, Xu J, Zhang D W. Electrical characteristics and conduction mechanisms of metal–insulator–metal capacitors with nanolaminated Al2O3–HfO2 dielectrics[J]. Appl Phys Lett, 2008, 93: 092909. doi: 10.1063/1.2969399

[4]

Zhu B, Liu W J, Wei L. Voltage-dependent capacitance behavior and underlying mechanisms in metal–insulator–metal capacitors with Al2O3–ZrO2–SiO2 nano-laminates[J]. J Phys D, 2016, 49: 135106. doi: 10.1088/0022-3727/49/13/135106

[5]

Sillars R W. The properties of a dielectric containing semiconducting particles of various shapes[J]. J Inst Elect Eng, 1937: 378.

[6]

Ge S B, Shen M R, Ning Z Y. Dielectric enhancement and Maxwell Wagner effect in polycrystalline BaTiO3 Ba0.2Sr0.8TiO3 multilayered thin films[J]. Chin Phys Lett, 1996, 19(4): 563.

[7]

Qu B D, Evstigneev M, Johnson D J. Dielectric properties of BaTiO3/SrTiO3 multilayered thin films prepared by pulsed laser deposition[J]. Appl Phy Lett, 1998, 1394.

[8]

O'Neill D, Bowman R M, Gregg J M. Dielectric enhancement and Maxwell–Wagner effects in ferroelectric superlattice structures[J]. Appl Phy Lett, 2000, 77: 1520. doi: 10.1063/1.1290691

[9]

Catalan G, O'Neill D, Bowman R M. Relaxor features in ferroelectric superlattices: a Maxwell-Wagner approach[J]. Appl Phys Lett, 2000, 77: 3078. doi: 10.1063/1.1324729

[10]

Shen M, Ge S, Cao W. Dielectric enhancement and Maxwell–Wagner effects in polycrystalline ferroelectric multilayered thin films[J]. J Phy D, 2001, 34(19): 2935. doi: 10.1088/0022-3727/34/19/301

[11]

Li W, Auciello O, Premnath R N. Giant dielectric constant dominated by Maxwell–Wagner relaxation in Al2O3/TiO2 nanolaminates synthesized by atomic layer deposition[J]. Appl Phys Lett, 2010, 96: 162907. doi: 10.1063/1.3413961

[12]

Jinesh K B, Lamy Y, Klootwijk J H. Maxwel–Wagner instability in bilayer dielectric stacks[J]. Appl Phy Lett, 2009, 95: 122903. doi: 10.1063/1.3236532

[13]

Karthik R, Kannadassan D, Baghini M S. Nanostructured bilayer anodic TiO2/Al2O3 metal–insulator–metal capacitor[J]. J Nanosci Nanotech, 2013, 13: 1. doi: 10.1166/jnn.2013.6733

[14]

Sze S M, Ng Kwok K. Physics of semiconductor devices. John Wiley & Sons, 2006

[15]

Maxwell J C. A treatise on electricity and magnetism. Oxford: Clarendon Press, 1873

[16]

Morshuis P H F, Bodega R, Fabiani D. Dielectric interfaces in dc constructions: space charge and polarization phenomena[J]. IEEE International Conference on Solid Dielectrics, ICSD, 2007, 450.

[17]

Houssa M, Tuominen M, Naili M. Trap-assisted tunneling in high permittivity gate dielectric stacks[J]. J Appl Phys, 2000, 87(12): 8615. doi: 10.1063/1.373587

[1]

He Z X, Daley D, Bolam R. High and low density complimentary MIM capacitors fabricated simultaneously in advanced RFCMOS and BiCMOS technologies[J]. IEEE Bipolar/BiCMOS Circuits Tech Meet, 2008: 212.

[2]

Ding S J, Zhu C X, Li M F. Atomic-layer-deposited Al2O3-HfO2-Al2O3 dielectrics for metal-insulator-metal capacitor applications[J]. Appl Phys Lett, 2005, 87: 053501. doi: 10.1063/1.2005397

[3]

Ding S J, Xu J, Zhang D W. Electrical characteristics and conduction mechanisms of metal–insulator–metal capacitors with nanolaminated Al2O3–HfO2 dielectrics[J]. Appl Phys Lett, 2008, 93: 092909. doi: 10.1063/1.2969399

[4]

Zhu B, Liu W J, Wei L. Voltage-dependent capacitance behavior and underlying mechanisms in metal–insulator–metal capacitors with Al2O3–ZrO2–SiO2 nano-laminates[J]. J Phys D, 2016, 49: 135106. doi: 10.1088/0022-3727/49/13/135106

[5]

Sillars R W. The properties of a dielectric containing semiconducting particles of various shapes[J]. J Inst Elect Eng, 1937: 378.

[6]

Ge S B, Shen M R, Ning Z Y. Dielectric enhancement and Maxwell Wagner effect in polycrystalline BaTiO3 Ba0.2Sr0.8TiO3 multilayered thin films[J]. Chin Phys Lett, 1996, 19(4): 563.

[7]

Qu B D, Evstigneev M, Johnson D J. Dielectric properties of BaTiO3/SrTiO3 multilayered thin films prepared by pulsed laser deposition[J]. Appl Phy Lett, 1998, 1394.

[8]

O'Neill D, Bowman R M, Gregg J M. Dielectric enhancement and Maxwell–Wagner effects in ferroelectric superlattice structures[J]. Appl Phy Lett, 2000, 77: 1520. doi: 10.1063/1.1290691

[9]

Catalan G, O'Neill D, Bowman R M. Relaxor features in ferroelectric superlattices: a Maxwell-Wagner approach[J]. Appl Phys Lett, 2000, 77: 3078. doi: 10.1063/1.1324729

[10]

Shen M, Ge S, Cao W. Dielectric enhancement and Maxwell–Wagner effects in polycrystalline ferroelectric multilayered thin films[J]. J Phy D, 2001, 34(19): 2935. doi: 10.1088/0022-3727/34/19/301

[11]

Li W, Auciello O, Premnath R N. Giant dielectric constant dominated by Maxwell–Wagner relaxation in Al2O3/TiO2 nanolaminates synthesized by atomic layer deposition[J]. Appl Phys Lett, 2010, 96: 162907. doi: 10.1063/1.3413961

[12]

Jinesh K B, Lamy Y, Klootwijk J H. Maxwel–Wagner instability in bilayer dielectric stacks[J]. Appl Phy Lett, 2009, 95: 122903. doi: 10.1063/1.3236532

[13]

Karthik R, Kannadassan D, Baghini M S. Nanostructured bilayer anodic TiO2/Al2O3 metal–insulator–metal capacitor[J]. J Nanosci Nanotech, 2013, 13: 1. doi: 10.1166/jnn.2013.6733

[14]

Sze S M, Ng Kwok K. Physics of semiconductor devices. John Wiley & Sons, 2006

[15]

Maxwell J C. A treatise on electricity and magnetism. Oxford: Clarendon Press, 1873

[16]

Morshuis P H F, Bodega R, Fabiani D. Dielectric interfaces in dc constructions: space charge and polarization phenomena[J]. IEEE International Conference on Solid Dielectrics, ICSD, 2007, 450.

[17]

Houssa M, Tuominen M, Naili M. Trap-assisted tunneling in high permittivity gate dielectric stacks[J]. J Appl Phys, 2000, 87(12): 8615. doi: 10.1063/1.373587

Search

Advanced Search >>

GET CITATION

R Karthik, A Akshaykranth. Fabrication and modeling of multi-layer metal–insulator-metal capacitors[J]. J. Semicond., 2017, 38(12): 123002. doi: 10.1088/1674-4926/38/12/123002.

Export: BibTex EndNote

Article Metrics

Article views: 2075 Times PDF downloads: 26 Times Cited by: 0 Times

History

Manuscript received: 24 March 2017 Manuscript revised: 05 May 2017 Online: Published: 01 December 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误