J. Semicond. > Volume 37 > Issue 9 > Article Number: 093004

A thin transition film formed by plasma exposure contributes to the germanium surface hydrophilicity

Shumei Lai 1, , Danfeng Mao 1, , Zhiwei Huang 1, , Yihong Xu 1, , Songyan Chen 1, , , Cheng Li 1, , Wei Huang 1, and Dingliang Tang 2,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Plasma treatment and 10% NH4OH solution rinsing were performed on a germanium (Ge) surface. It was found that the Ge surface hydrophilicity after O2 and Ar plasma exposure was stronger than that of samples subjected to N2 plasma exposure. This is because the thin GeOx film formed on Ge by O2 or Ar plasma is more hydrophilic than GeOxNy formed by N2 plasma treatment. A flat (RMS<0.5 nm) Ge surface with high hydrophilicity (contact angle smaller than 3°) was achieved by O2 plasma treatment, showing its promising application in Ge low-temperature direct wafer bonding.

Key words: surface hydrophilicitycontact angleplasmaGeOxNyGeOx

Abstract: Plasma treatment and 10% NH4OH solution rinsing were performed on a germanium (Ge) surface. It was found that the Ge surface hydrophilicity after O2 and Ar plasma exposure was stronger than that of samples subjected to N2 plasma exposure. This is because the thin GeOx film formed on Ge by O2 or Ar plasma is more hydrophilic than GeOxNy formed by N2 plasma treatment. A flat (RMS<0.5 nm) Ge surface with high hydrophilicity (contact angle smaller than 3°) was achieved by O2 plasma treatment, showing its promising application in Ge low-temperature direct wafer bonding.

Key words: surface hydrophilicitycontact angleplasmaGeOxNyGeOx



References:

[1]

Moriceau H, Rieutord F, Fournel F. Low temperature direct bonding:an attractive technology for heterostructures build-up[J]. Microelectron Reliab, 2012, 52(2): 331. doi: 10.1016/j.microrel.2011.08.004

[2]

Shen Jingman, Sun Lijie, Chen Kaijian. Direct-bonded four-junction GaAs solar cells[J]. Journal of Semiconductors, 2015, 36(6): 064012. doi: 10.1088/1674-4926/36/6/064012

[3]

Feng X Q, Huang Y. Mechanics of smart-cut technology[J]. Int J Solids Struct, 2004, 41(16): 4299.

[4]

Lin Wang, Ruan Yujiao, Chen Songyan. The impact of polishing on germanium-on-insulator substrates[J]. Journal of Semiconductors, 2013, 34(8): 083005. doi: 10.1088/1674-4926/34/8/083005

[5]

Akatsua T, Deguet C, Sanchez L. Germanium-on-insulator (GeOI) substrates-a novel engineered substrate for future high performance devices[J]. Mater Sci Semicond Process, 2006, 9(4): 444.

[6]

Ruan Yujiao, Liu Rui, Lin Wang. Impacts of thermal annealing on hydrogen-implanted germanium and germanium-oninsulator substrates[J]. J Electrochem Soc, 2011, 158(11): H1125. doi: 10.1149/2.022111jes

[7]

Bhattacharya S, Datta A, Berg J M. Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength[J]. J Microelectromech Syst, 2005, 14(3): 590. doi: 10.1109/JMEMS.2005.844746

[8]

Bäcklund Y, Hermansson K, Smith L. Bond-strength measurements related to silicon surface hydrophilicity[J]. J Electrochem Soc, 1992, 139(8): 2299. doi: 10.1149/1.2221218

[9]

Suni T, Henttinen K, Suni I. Effects of plasma activation on hydrophilic bonding of Si and SiO2[J]. J Electrochem Soc, 2002, 149(6): G348. doi: 10.1149/1.1477209

[10]

Ma Xiaobo, Chen Chao, Liu Weili. Study of the Ge wafer surface hydrophilicity after low-temperature plasma activation[J]. J Electrochem Soc, 2009, 156(5): H307. doi: 10.1149/1.3089363

[11]

Oh J, Campbell J C. Thermal desorption of Ge native oxides and the loss of Ge from the surface[J]. J Electron Mater, 2004, 33(4): 364. doi: 10.1007/s11664-004-0144-4

[12]

Hwang H S, Park J H, Choi E S. Effect of NH4OH concentration on surface qualities of a silicon wafer after final-touch polishing[J]. J Electrochem Soc, 2011, 158(6): H641. doi: 10.1149/1.3571006

[13]

Marinov D. Reactive adsorption of molecules and radicals on surfaces under plasma exposure. Plasma Physics, Ecole Polytechnique X, 2012

[14]

Lin Meng, Li Ming, An Xia. Investigation of passivation of Ge substrate by N2O plasma and N2 plasma treatment[J]. ECS Trans, 2014, 60(1): 127. doi: 10.1149/06001.0127ecst

[15]

Schmeisser D, Schnell R D, Bogen A. Surface oxidation states of germanium[J]. Surf Sci, 1986, 172(2): 455. doi: 10.1016/0039-6028(86)90767-3

[16]

Tong Q Y, Gösele U M. Wafer bonding and layer splitting for microsystems[J]. Adv Mater, 1999, 11(17): 1409. doi: 10.1002/(ISSN)1521-4095

[1]

Moriceau H, Rieutord F, Fournel F. Low temperature direct bonding:an attractive technology for heterostructures build-up[J]. Microelectron Reliab, 2012, 52(2): 331. doi: 10.1016/j.microrel.2011.08.004

[2]

Shen Jingman, Sun Lijie, Chen Kaijian. Direct-bonded four-junction GaAs solar cells[J]. Journal of Semiconductors, 2015, 36(6): 064012. doi: 10.1088/1674-4926/36/6/064012

[3]

Feng X Q, Huang Y. Mechanics of smart-cut technology[J]. Int J Solids Struct, 2004, 41(16): 4299.

[4]

Lin Wang, Ruan Yujiao, Chen Songyan. The impact of polishing on germanium-on-insulator substrates[J]. Journal of Semiconductors, 2013, 34(8): 083005. doi: 10.1088/1674-4926/34/8/083005

[5]

Akatsua T, Deguet C, Sanchez L. Germanium-on-insulator (GeOI) substrates-a novel engineered substrate for future high performance devices[J]. Mater Sci Semicond Process, 2006, 9(4): 444.

[6]

Ruan Yujiao, Liu Rui, Lin Wang. Impacts of thermal annealing on hydrogen-implanted germanium and germanium-oninsulator substrates[J]. J Electrochem Soc, 2011, 158(11): H1125. doi: 10.1149/2.022111jes

[7]

Bhattacharya S, Datta A, Berg J M. Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength[J]. J Microelectromech Syst, 2005, 14(3): 590. doi: 10.1109/JMEMS.2005.844746

[8]

Bäcklund Y, Hermansson K, Smith L. Bond-strength measurements related to silicon surface hydrophilicity[J]. J Electrochem Soc, 1992, 139(8): 2299. doi: 10.1149/1.2221218

[9]

Suni T, Henttinen K, Suni I. Effects of plasma activation on hydrophilic bonding of Si and SiO2[J]. J Electrochem Soc, 2002, 149(6): G348. doi: 10.1149/1.1477209

[10]

Ma Xiaobo, Chen Chao, Liu Weili. Study of the Ge wafer surface hydrophilicity after low-temperature plasma activation[J]. J Electrochem Soc, 2009, 156(5): H307. doi: 10.1149/1.3089363

[11]

Oh J, Campbell J C. Thermal desorption of Ge native oxides and the loss of Ge from the surface[J]. J Electron Mater, 2004, 33(4): 364. doi: 10.1007/s11664-004-0144-4

[12]

Hwang H S, Park J H, Choi E S. Effect of NH4OH concentration on surface qualities of a silicon wafer after final-touch polishing[J]. J Electrochem Soc, 2011, 158(6): H641. doi: 10.1149/1.3571006

[13]

Marinov D. Reactive adsorption of molecules and radicals on surfaces under plasma exposure. Plasma Physics, Ecole Polytechnique X, 2012

[14]

Lin Meng, Li Ming, An Xia. Investigation of passivation of Ge substrate by N2O plasma and N2 plasma treatment[J]. ECS Trans, 2014, 60(1): 127. doi: 10.1149/06001.0127ecst

[15]

Schmeisser D, Schnell R D, Bogen A. Surface oxidation states of germanium[J]. Surf Sci, 1986, 172(2): 455. doi: 10.1016/0039-6028(86)90767-3

[16]

Tong Q Y, Gösele U M. Wafer bonding and layer splitting for microsystems[J]. Adv Mater, 1999, 11(17): 1409. doi: 10.1002/(ISSN)1521-4095

Search

Advanced Search >>

GET CITATION

S M Lai, D F Mao, Z W Huang, Y H Xu, S Y Chen, C Li, W Huang, D L Tang. A thin transition film formed by plasma exposure contributes to the germaniumsurface hydrophilicity[J]. J. Semicond., 2016, 37(9): 093004. doi: 10.1088/1674-4926/37/9/093004.

Export: BibTex EndNote

Article Metrics

Article views: 1822 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 19 January 2016 Manuscript revised: 16 February 2016 Online: Published: 01 September 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误