J. Semicond. > Volume 37 > Issue 10 > Article Number: 102003

Magnetic flux assisted thermospin transport in a Rashba ring

Feng Liang 1, , , Benling Gao 1, and Yu Gu 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The electron transport through a Rashba ring with a magnetic flux and driven by a temperature difference is investigated. It is found that the spin interference effect induced by the Rashba spin-orbit interaction and by the magnetic flux can break the balance between the spin-up and spin-down component currents in the thermally driven charge current and thus result in a spin current. The analytical derivation and numerical calculations reveal that the magnitude, sign, peaks and spin-polarization of the generated spin current can be readily modulated by the system parameters. In particular, with some choices of the parameters, the spin polarization of the generated spin current can reach 100%, that is, a fully spin-polarized thermospin current can be produced. These results may help the use of the spin-dependent Seebeck effect to generate and manipulate a spin current.

Key words: spin currentSeebeck effectRashba ring

Abstract: The electron transport through a Rashba ring with a magnetic flux and driven by a temperature difference is investigated. It is found that the spin interference effect induced by the Rashba spin-orbit interaction and by the magnetic flux can break the balance between the spin-up and spin-down component currents in the thermally driven charge current and thus result in a spin current. The analytical derivation and numerical calculations reveal that the magnitude, sign, peaks and spin-polarization of the generated spin current can be readily modulated by the system parameters. In particular, with some choices of the parameters, the spin polarization of the generated spin current can reach 100%, that is, a fully spin-polarized thermospin current can be produced. These results may help the use of the spin-dependent Seebeck effect to generate and manipulate a spin current.

Key words: spin currentSeebeck effectRashba ring



References:

[1]

Wang B G, Wang J, Guo H. Quantum spin field effect transistor[J]. Phys Rev B, 2003, 67: 092408. doi: 10.1103/PhysRevB.67.092408

[2]

Brataas A, Tserkovnyak Y, Bauer G E W. Spin battery operated by ferromagnetic resonance[J]. Phys Rev B, 2002, 66: 060404. doi: 10.1103/PhysRevB.66.060404

[3]

Busl M, Platero G. Spin-polarized currents in double and triple quantum dots driven by ac magnetic fields[J]. Phys Rev B, 2010, 82: 205304. doi: 10.1103/PhysRevB.82.205304

[4]

Chen S H, Chen C L, Chang C R. Spin-charge conversion in a multiterminal Aharonov-Casher ring coupled to processing ferromagnets: a charge-conserving Floquet nonequilibrium Green function approach[J]. Phys Rev B, 2013, 87: 045402.

[5]

Murakami S, Nagaosa N, Zhang S C. Dissipationless quantum spin current at room temperature[J]. Science, 2003, 301: 1348. doi: 10.1126/science.1087128

[6]

Sinova J, Culcer D, Niu Q. Universal intrinsic spin Hall effect[J]. Phys Rev Lett, 2004, 92: 126603. doi: 10.1103/PhysRevLett.92.126603

[7]

Kato Y K, Myers R C, Gossard A C. Observation of the spin Hall effect in semiconductors[J]. Science, 2004, 306: 1910. doi: 10.1126/science.1105514

[8]

Wunderlich J, Kaestner B, Sinova J. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system[J]. Phys Rev Lett, 2005, 94: 047204. doi: 10.1103/PhysRevLett.94.047204

[9]

Katsura H, Nagaosa N, Balatsky A V. Spin current and magnetoelectric effect in noncollinear magnets[J]. Phys Rev Lett, 2005, 95: 057205. doi: 10.1103/PhysRevLett.95.057205

[10]

Lee Y L, Lee Y W. Quantum dynamics of tunneling between ferromagnets[J]. Phys Rev B, 2003, 68: 184413. doi: 10.1103/PhysRevB.68.184413

[11]

Wang J, Chan K S. Equilibrium spin current through tunneling junctions[J]. Phys Rev B, 2003, 74: 035342.

[12]

Chi F, Zheng J. Spin separation via a three-terminal Aharonov-Bohm interferometers[J]. Appl Phys Lett, 2008, 92: 062106. doi: 10.1063/1.2857471

[13]

Lu H F, Guo Y. Pure spin current in a three-terminal spin device in the presence of Rashba spin-orbit interaction[J]. Appl Phys Lett, 2007, 91: 092128. doi: 10.1063/1.2777149

[14]

Du J, Wang S X, Pan J H. Persistent spin currents in a triple-terminal quantum ring with three arms[J]. Journal of Semiconductors, 2011, 32: 042002. doi: 10.1088/1674-4926/32/4/042002

[15]

Walter M, Walowski J, Zbarsky V. Seebeck effect in magnetic tunnel junctions[J]. Nat Mater, 2010, 10: 742.

[16]

Liebing N, Serrano-Guisan S, Rott K. Tunneling magnetothermopower in magnetic tunnel junction nanopillars[J]. Phys Rev Lett, 2011, 107: 177201. doi: 10.1103/PhysRevLett.107.177201

[17]

Lin W, Hehn M, Chaput L. Giant spin-dependent thermoelectric effect in magnetic tunnel junctions[J]. Nature Commun, 2012, 3: 744. doi: 10.1038/ncomms1748

[18]

Dubi Y, Di Ventra M. Thermospin effects in a quantum dot connected to ferromagnetic leads[J]. Phys Rev B, 2009, 79: 081302. doi: 10.1103/PhysRevB.79.081302

[19]

Haug H, Jauho A P. Quantum kinetics in transport and optics of semiconductors. Berlin: Springer, 1998

[20]

Grundler D. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure[J]. Phys Rev Lett, 2000, 84: 6074. doi: 10.1103/PhysRevLett.84.6074

[21]

Hao Yafei, Chen Yonghai, Hao Guodong. Effect of a step quantum well structure and an electric-field on the Rashba spin splitting[J]. Journal of Semiconductors, 2009, 30: 062001. doi: 10.1088/1674-4926/30/6/062001

[1]

Wang B G, Wang J, Guo H. Quantum spin field effect transistor[J]. Phys Rev B, 2003, 67: 092408. doi: 10.1103/PhysRevB.67.092408

[2]

Brataas A, Tserkovnyak Y, Bauer G E W. Spin battery operated by ferromagnetic resonance[J]. Phys Rev B, 2002, 66: 060404. doi: 10.1103/PhysRevB.66.060404

[3]

Busl M, Platero G. Spin-polarized currents in double and triple quantum dots driven by ac magnetic fields[J]. Phys Rev B, 2010, 82: 205304. doi: 10.1103/PhysRevB.82.205304

[4]

Chen S H, Chen C L, Chang C R. Spin-charge conversion in a multiterminal Aharonov-Casher ring coupled to processing ferromagnets: a charge-conserving Floquet nonequilibrium Green function approach[J]. Phys Rev B, 2013, 87: 045402.

[5]

Murakami S, Nagaosa N, Zhang S C. Dissipationless quantum spin current at room temperature[J]. Science, 2003, 301: 1348. doi: 10.1126/science.1087128

[6]

Sinova J, Culcer D, Niu Q. Universal intrinsic spin Hall effect[J]. Phys Rev Lett, 2004, 92: 126603. doi: 10.1103/PhysRevLett.92.126603

[7]

Kato Y K, Myers R C, Gossard A C. Observation of the spin Hall effect in semiconductors[J]. Science, 2004, 306: 1910. doi: 10.1126/science.1105514

[8]

Wunderlich J, Kaestner B, Sinova J. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system[J]. Phys Rev Lett, 2005, 94: 047204. doi: 10.1103/PhysRevLett.94.047204

[9]

Katsura H, Nagaosa N, Balatsky A V. Spin current and magnetoelectric effect in noncollinear magnets[J]. Phys Rev Lett, 2005, 95: 057205. doi: 10.1103/PhysRevLett.95.057205

[10]

Lee Y L, Lee Y W. Quantum dynamics of tunneling between ferromagnets[J]. Phys Rev B, 2003, 68: 184413. doi: 10.1103/PhysRevB.68.184413

[11]

Wang J, Chan K S. Equilibrium spin current through tunneling junctions[J]. Phys Rev B, 2003, 74: 035342.

[12]

Chi F, Zheng J. Spin separation via a three-terminal Aharonov-Bohm interferometers[J]. Appl Phys Lett, 2008, 92: 062106. doi: 10.1063/1.2857471

[13]

Lu H F, Guo Y. Pure spin current in a three-terminal spin device in the presence of Rashba spin-orbit interaction[J]. Appl Phys Lett, 2007, 91: 092128. doi: 10.1063/1.2777149

[14]

Du J, Wang S X, Pan J H. Persistent spin currents in a triple-terminal quantum ring with three arms[J]. Journal of Semiconductors, 2011, 32: 042002. doi: 10.1088/1674-4926/32/4/042002

[15]

Walter M, Walowski J, Zbarsky V. Seebeck effect in magnetic tunnel junctions[J]. Nat Mater, 2010, 10: 742.

[16]

Liebing N, Serrano-Guisan S, Rott K. Tunneling magnetothermopower in magnetic tunnel junction nanopillars[J]. Phys Rev Lett, 2011, 107: 177201. doi: 10.1103/PhysRevLett.107.177201

[17]

Lin W, Hehn M, Chaput L. Giant spin-dependent thermoelectric effect in magnetic tunnel junctions[J]. Nature Commun, 2012, 3: 744. doi: 10.1038/ncomms1748

[18]

Dubi Y, Di Ventra M. Thermospin effects in a quantum dot connected to ferromagnetic leads[J]. Phys Rev B, 2009, 79: 081302. doi: 10.1103/PhysRevB.79.081302

[19]

Haug H, Jauho A P. Quantum kinetics in transport and optics of semiconductors. Berlin: Springer, 1998

[20]

Grundler D. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure[J]. Phys Rev Lett, 2000, 84: 6074. doi: 10.1103/PhysRevLett.84.6074

[21]

Hao Yafei, Chen Yonghai, Hao Guodong. Effect of a step quantum well structure and an electric-field on the Rashba spin splitting[J]. Journal of Semiconductors, 2009, 30: 062001. doi: 10.1088/1674-4926/30/6/062001

[1]

Feng Liang, Benling Gao, Jun Zhang, Yu Gu. Controllable persistent spin-polarized charge current in a Rashba ring. J. Semicond., 2017, 38(8): 082002. doi: 10.1088/1674-4926/38/8/082002

[2]

Yang Fengfan, Fang Liang, Li Li, Fu Guangzong, Zhang Yong, Li Mingwei, Yu Jiangtao. Structure and Seebeck Effect for Transparent and Conductive CdIn2O4 Thin Film. J. Semicond., 2007, 28(S1): 67.

[3]

Hao Yafei, Chen Yonghai, Hao Guodong, Wang Zhanguo. Effect of a step quantum well structure and an electric-field on the Rashba spin splitting. J. Semicond., 2009, 30(6): 062001. doi: 10.1088/1674-4926/30/6/062001

[4]

Du Jian, Wang Suxin, Pan Jianghong, Duan Xiuzhi. Persistent spin currents in a triple-terminal quantum ring with three arms. J. Semicond., 2011, 32(4): 042002. doi: 10.1088/1674-4926/32/4/042002

[5]

Xu Wen. Quantum and Transport Mobilities of a Two-Dimensional Electron Gas in the Presence of the Rashba Spin-Orbit Interaction. J. Semicond., 2006, 27(2): 204.

[6]

Hairui Zhang, Yong Sun. Properties of polaron in a triangular quantum well induced by the Rashba effect. J. Semicond., 2014, 35(10): 102001. doi: 10.1088/1674-4926/35/10/102001

[7]

Ziliang Cai, Ming Li, Libo Fan. Sheet carrier density dependent Rashba spin splitting in the Al0.5Ga0.5N/GaN/Al0.5Ga0.5N quantum well. J. Semicond., 2014, 35(9): 092002. doi: 10.1088/1674-4926/35/9/092002

[8]

Sabiq Chishti, Bahniman Ghosh, Bhupesh Bishnoi. Monte-Carlo simulation studies of the effect of temperature and diameter variation on spin transport in II—VI semiconductor nanowires. J. Semicond., 2015, 36(2): 022001. doi: 10.1088/1674-4926/36/2/022001

[9]

Du Jian, Li Zhiwen, Zhang Peng. Effect of External Magnetic Field on the Spin-Dependent Transport and Shot Noise of a Ferromagnetic/Semiconductor/Ferromagnetic Heterojunction with Double δ Tunnel Barrier. J. Semicond., 2008, 29(6): 1147.

[10]

Suo Kainan, Zhang Weilian, Niu Xinhuan, Jiang Zhongwei. Seebeck Coefficient of Czochralski SiGe Alloy at High Temperatures. J. Semicond., 2007, 28(S1): 16.

[11]

K S Urmila, T A Namitha, J Rajani, R R Philip, B Pradeep. Optoelectronic properties and Seebeck coefficient in SnSe thin films. J. Semicond., 2016, 37(9): 093002. doi: 10.1088/1674-4926/37/9/093002

[12]

Li Kun, Teng Jianfu, Xuan Xiuwei. Effect of collector bias current on the linearity of common-emitter BJT amplifiers. J. Semicond., 2010, 31(12): 124012. doi: 10.1088/1674-4926/31/12/124012

[13]

Miao Qinghai, Zhu Yangjun, Zhang Xinghua, Lu Shuojin. Excessive Thermotaxis Effect of Low Current in pn Junction and Theoretical Analog Calculation. J. Semicond., 2006, 27(9): 1595.

[14]

O.Ya Olikh, K.V. Voitenko, R.M. Burbelo, JaM. Olikh. Effect of ultrasound on reverse leakage current of silicon Schottky barrier structure. J. Semicond., 2016, 37(12): 122002. doi: 10.1088/1674-4926/37/12/122002

[15]

Jian Wang, Nan Zhou. Magnetoelectric spin–orbit logic. J. Semicond., 2019, 40(2): 020206. doi: 10.1088/1674-4926/40/2/020206

[16]

Zhu Yangjun, Miao Qinghai, Zhang Xinghua, Han Zhengsheng. A novel electrical measurement method of peak junction temperature based on the excessive thermotaxis effect of low current. J. Semicond., 2009, 30(9): 094005. doi: 10.1088/1674-4926/30/9/094005

[17]

Zhu Huiwen, Liu Yongsong, Mao Lingfeng, Shen Jingqin, Zhu Zhiyan, Tang Weihua. Theoretical study of the SiO2/Si interface and its effect on energy band profile and MOSFET gate tunneling current. J. Semicond., 2010, 31(8): 082003. doi: 10.1088/1674-4926/31/8/082003

[18]

Chen Haifeng, Hao Yue, Ma Xiaohua. Effect of High-Gate-Voltage Stress on the Reverse Gated-Diode Current in LDD nMOSFET's. J. Semicond., 2008, 29(5): 875.

[19]

Kamal Zeghdar, Lakhdar Dehimi, Achour Saadoune, Nouredine Sengouga. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode. J. Semicond., 2015, 36(12): 124002. doi: 10.1088/1674-4926/36/12/124002

[20]

Zhu Yangjun, Miao Qinghai, Zhang Xinghua, Lu Shuojin. Verification of the Excessive Thermotaxis Effect of Low Current Based on Actual Junction Temperature Distribution. J. Semicond., 2007, 28(7): 1112.

Search

Advanced Search >>

GET CITATION

F Liang, B L Gao, Y Gu. Magnetic flux assisted thermospin transport in a Rashba ring[J]. J. Semicond., 2016, 37(10): 102003. doi: 10.1088/1674-4926/37/10/102003.

Export: BibTex EndNote

Article Metrics

Article views: 595 Times PDF downloads: 8 Times Cited by: 0 Times

History

Manuscript received: 29 September 2015 Manuscript revised: 12 April 2016 Online: Published: 01 October 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误