J. Semicond. > Volume 38 > Issue 12 > Article Number: 123001

Investigation of post-thermal annealing on material properties of Cu–In–Zn–Se thin films

H. H. Güllü 1, 3, , and M. Parlak 2, 3,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The Cu–In–Zn–Se thin film was synthesized by changing the contribution of In in chalcopyrite CuInSe2 with Zn. The XRD spectra of the films showed the characteristic diffraction peaks in a good agreement with the quaternary Cu–In–Zn–Se compound. They were in the polycrystalline nature without any post-thermal process, and the main orientation was found to be in the (112) direction with tetragonal crystalline structure. With increasing annealing temperature, the peak intensities in preferred orientation became more pronounced and grain sizes were in increasing behavior from 6.0 to 25.0 nm. The samples had almost the same atomic composition of Cu0.5In0.5ZnSe2. However, EDS results of the deposited films indicated that there was Se re-evaporation and/or segregation with the annealing in the structure of the film. According to the optical analysis, the transmittance values of the films increased with the annealing temperature. The absorption coefficient of the films was calculated as around 105 cm−1 in the visible region. Moreover, optical band gap values were found to be changing in between 2.12 and 2.28 eV depending on annealing temperature. The temperature-dependent dark- and photo-conductivity measurements were carried out to investigate the electrical characteristics of the films.

Key words: annealingCu–In–Zn–Sethin film

Abstract: The Cu–In–Zn–Se thin film was synthesized by changing the contribution of In in chalcopyrite CuInSe2 with Zn. The XRD spectra of the films showed the characteristic diffraction peaks in a good agreement with the quaternary Cu–In–Zn–Se compound. They were in the polycrystalline nature without any post-thermal process, and the main orientation was found to be in the (112) direction with tetragonal crystalline structure. With increasing annealing temperature, the peak intensities in preferred orientation became more pronounced and grain sizes were in increasing behavior from 6.0 to 25.0 nm. The samples had almost the same atomic composition of Cu0.5In0.5ZnSe2. However, EDS results of the deposited films indicated that there was Se re-evaporation and/or segregation with the annealing in the structure of the film. According to the optical analysis, the transmittance values of the films increased with the annealing temperature. The absorption coefficient of the films was calculated as around 105 cm−1 in the visible region. Moreover, optical band gap values were found to be changing in between 2.12 and 2.28 eV depending on annealing temperature. The temperature-dependent dark- and photo-conductivity measurements were carried out to investigate the electrical characteristics of the films.

Key words: annealingCu–In–Zn–Sethin film



References:

[1]

Shay J L, Wernick J H. Ternary chalcopyrite semiconductors: growth, electronic properties and applications. Oxford: Pergamon Press, 1975

[2]

Liu C Y, Li Z M, Gu H Y. Sodium passivation of the grain boundaries in CuInSe2 and Cu2ZnSnS4 for high-efficiency solar cells[J]. Adv Energy Mater, 2017, 7: 1601457. doi: 10.1002/aenm.201601457

[3]

Kushiya K. CuInSe2-based thin-film photovoltaic technology in the gigawatt production era[J]. Jpn J Appl Phys, 2012, 51: 10N.

[4]

Nanayakkara S U, Horowitz K, Kanevce A. Evaluating the economic viability of CdTe/CIS and CIGS/CIS tandem photovoltaic modules[J]. Prog Photovolt Res Appl, 2017, 25: 271. doi: 10.1002/pip.v25.4

[5]

Green M A, Emery K, Hihikawa Y. Solar cell efficieny tables (version 48)[J]. Prog Photovolt Res Appl, 2016, 24: 905. doi: 10.1002/pip.v24.7

[6]

Gremenok V F, Zaretskaya E P, Siarheyeva V M. Investigation of CuInZnSe2 thin films for solar cell applications[J]. Thin Solid Films, 2005, 487(1/2): 193.

[7]

Wagner G, Lehmann S, Schorr S. The two-phase region in 2(ZnSe)x(CuInSe2)1−x alloys and structural relation between the tetragonal and cubic phases[J]. J Solid Stat Chem, 2005, 178: 3631. doi: 10.1016/j.jssc.2005.09.009

[8]

Bodnar I V, Gremenok V F. Crystal growth and properties of (CuInSe2)1−x(2ZnSe)x Solid solutions[J]. Inorg Mater, 2003, 39(11): 1122. doi: 10.1023/A:1027333105634

[9]

Gan J N, Tauc J. Optical properties of the (CuInSe2)1–x (2ZnSe)x system[J]. Phys Rev B, 1975, 12(12): 5797. doi: 10.1103/PhysRevB.12.5797

[10]

Takei K, Maeda T, Gao F. Crystallographic and optical properties of CuInSe2–ZnSe system[J]. Jpn J Appl Phys, 2014, 53: 05F.

[11]

Schorr S, Tovar M, Sheptyakov D. Crystal structure and cation distribution in the solid solution series 2(ZnX)–CuInX2 (X = S, Se, Te)[J]. J Phys Chem Solids, 2005, 66: 1961. doi: 10.1016/j.jpcs.2005.09.035

[12]

Wibowo R A, Kim K H. Band gap engineering of RF-sputtered CuInZnSe2 thin films for indium-reduced thin-film solar cell application[J]. Sol Energy Mater Sol Cells, 2009, 93: 941. doi: 10.1016/j.solmat.2008.11.020

[13]

Tseng Y H, Yang C S, Wu C H. Growth mechanism of CuZnInSe2 thin films grown by molecular beam epitaxy[J]. J Cryst Growth, 2013, 378: 158. doi: 10.1016/j.jcrysgro.2012.12.045

[14]

Guillen C, Herrero J. Zn incorporation and (CuIn)1−xZn2xSe2 thin film formation during the selenization of evaporated Cu and In precursors on Al:ZnO coated glass substrates[J]. J Phys Chem Solids, 2011, 72: 1362. doi: 10.1016/j.jpcs.2011.08.016

[15]

Müller J, Nowoczin J, Schmitt H. Composition, structure and optical properties of sputtered thin films of CuInSe2[J]. Thin Solid Films, 2006, 496(2): 364. doi: 10.1016/j.tsf.2005.09.077

[16]

Adachi S. Properties of group-IV, III–V and II–VI semiconductors. England: John Wiley & Sons Ltd, 2005

[17]

Kaleli M, Parlak M, Ercelebi C. Studies on device properties of an n-AgIn5Se8/p-Si heterojunction diode[J]. Semicond Sci Technol, 2011, 26(10): 105013. doi: 10.1088/0268-1242/26/10/105013

[18]

Colakoglu T, Parlak M. Electrical and photoelectrical properties of Ag–In–Se thin films evaporated by e-beam technique[J]. J Phys D, 2009, 42(3): 035416. doi: 10.1088/0022-3727/42/3/035416

[19]

Roth A. Vacuum Technology. Amsterdam: North Holland, 1980

[20]

Wibowo R A, Kim W S, Lee E S. Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide targets[J]. J Phys Chem Solids, 2007, 68(10): 1908. doi: 10.1016/j.jpcs.2007.05.022

[21]

Tanino H, Maeda T, Fujikake H. Raman spectra of CuInSe2[J]. Phys Rev B, 1992, 23: 1323.

[22]

Langford J I, Willson A J C. Scherrer after sixty years: a survey and some new results in the determination of crystallite size[J]. J Appl Cryst, 1978, 11: 102. doi: 10.1107/S0021889878012844

[23]

Cullity B D. Elements of X-ray diffraction. USA: Addision-Wesley Publishing, 1967

[24]

Güllü H H, Coskun E, Parlak M. Characterization of co-evaporated Cu–Ag–In–Se thin films[J]. Braz J Phys, 2014, 44(6): 719. doi: 10.1007/s13538-014-0270-2

[25]

Parlak M, Ercelebi C. The effect of substrate and post-annealing temperature on the structural and optical properties of polycrystalline InSe thin films[J]. Thin Solid Films, 1998, 322(1/2): 334.

[26]

Lopez-Garcia J, Guillen C. CuIn1−xAlxSe2 thin films obtained by selenization of evaporated metallic precursor layers[J]. Thin Solid Films, 2009, 517(7): 2240. doi: 10.1016/j.tsf.2008.10.095

[27]

Jaffe J E, Zunger A. Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors[J]. Phys Rev B, 1984, 29: 1882. doi: 10.1103/PhysRevB.29.1882

[28]

Revathi N, Prathap P, Ramakrishna Reddy K T. Thickness dependent physical properties of close space evaporated In2S3 films[J]. Solid State Sci, 2009, 11(7): 1288. doi: 10.1016/j.solidstatesciences.2009.04.019

[29]

Karaagac H, Parlak M. Deposition of AgGaS2 thin films by double source thermal evaporation technique[J]. J Mater Sci: Mater Electron, 2011, 22: 1426. doi: 10.1007/s10854-011-0325-x

[30]

Bube R H. Photoelectronic properties of semiconductors. Cambridge: Cambridge University Press, 1992

[31]

Bube R H. Photoconductivity of solids. New York: Interscience, 1960

[1]

Shay J L, Wernick J H. Ternary chalcopyrite semiconductors: growth, electronic properties and applications. Oxford: Pergamon Press, 1975

[2]

Liu C Y, Li Z M, Gu H Y. Sodium passivation of the grain boundaries in CuInSe2 and Cu2ZnSnS4 for high-efficiency solar cells[J]. Adv Energy Mater, 2017, 7: 1601457. doi: 10.1002/aenm.201601457

[3]

Kushiya K. CuInSe2-based thin-film photovoltaic technology in the gigawatt production era[J]. Jpn J Appl Phys, 2012, 51: 10N.

[4]

Nanayakkara S U, Horowitz K, Kanevce A. Evaluating the economic viability of CdTe/CIS and CIGS/CIS tandem photovoltaic modules[J]. Prog Photovolt Res Appl, 2017, 25: 271. doi: 10.1002/pip.v25.4

[5]

Green M A, Emery K, Hihikawa Y. Solar cell efficieny tables (version 48)[J]. Prog Photovolt Res Appl, 2016, 24: 905. doi: 10.1002/pip.v24.7

[6]

Gremenok V F, Zaretskaya E P, Siarheyeva V M. Investigation of CuInZnSe2 thin films for solar cell applications[J]. Thin Solid Films, 2005, 487(1/2): 193.

[7]

Wagner G, Lehmann S, Schorr S. The two-phase region in 2(ZnSe)x(CuInSe2)1−x alloys and structural relation between the tetragonal and cubic phases[J]. J Solid Stat Chem, 2005, 178: 3631. doi: 10.1016/j.jssc.2005.09.009

[8]

Bodnar I V, Gremenok V F. Crystal growth and properties of (CuInSe2)1−x(2ZnSe)x Solid solutions[J]. Inorg Mater, 2003, 39(11): 1122. doi: 10.1023/A:1027333105634

[9]

Gan J N, Tauc J. Optical properties of the (CuInSe2)1–x (2ZnSe)x system[J]. Phys Rev B, 1975, 12(12): 5797. doi: 10.1103/PhysRevB.12.5797

[10]

Takei K, Maeda T, Gao F. Crystallographic and optical properties of CuInSe2–ZnSe system[J]. Jpn J Appl Phys, 2014, 53: 05F.

[11]

Schorr S, Tovar M, Sheptyakov D. Crystal structure and cation distribution in the solid solution series 2(ZnX)–CuInX2 (X = S, Se, Te)[J]. J Phys Chem Solids, 2005, 66: 1961. doi: 10.1016/j.jpcs.2005.09.035

[12]

Wibowo R A, Kim K H. Band gap engineering of RF-sputtered CuInZnSe2 thin films for indium-reduced thin-film solar cell application[J]. Sol Energy Mater Sol Cells, 2009, 93: 941. doi: 10.1016/j.solmat.2008.11.020

[13]

Tseng Y H, Yang C S, Wu C H. Growth mechanism of CuZnInSe2 thin films grown by molecular beam epitaxy[J]. J Cryst Growth, 2013, 378: 158. doi: 10.1016/j.jcrysgro.2012.12.045

[14]

Guillen C, Herrero J. Zn incorporation and (CuIn)1−xZn2xSe2 thin film formation during the selenization of evaporated Cu and In precursors on Al:ZnO coated glass substrates[J]. J Phys Chem Solids, 2011, 72: 1362. doi: 10.1016/j.jpcs.2011.08.016

[15]

Müller J, Nowoczin J, Schmitt H. Composition, structure and optical properties of sputtered thin films of CuInSe2[J]. Thin Solid Films, 2006, 496(2): 364. doi: 10.1016/j.tsf.2005.09.077

[16]

Adachi S. Properties of group-IV, III–V and II–VI semiconductors. England: John Wiley & Sons Ltd, 2005

[17]

Kaleli M, Parlak M, Ercelebi C. Studies on device properties of an n-AgIn5Se8/p-Si heterojunction diode[J]. Semicond Sci Technol, 2011, 26(10): 105013. doi: 10.1088/0268-1242/26/10/105013

[18]

Colakoglu T, Parlak M. Electrical and photoelectrical properties of Ag–In–Se thin films evaporated by e-beam technique[J]. J Phys D, 2009, 42(3): 035416. doi: 10.1088/0022-3727/42/3/035416

[19]

Roth A. Vacuum Technology. Amsterdam: North Holland, 1980

[20]

Wibowo R A, Kim W S, Lee E S. Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide targets[J]. J Phys Chem Solids, 2007, 68(10): 1908. doi: 10.1016/j.jpcs.2007.05.022

[21]

Tanino H, Maeda T, Fujikake H. Raman spectra of CuInSe2[J]. Phys Rev B, 1992, 23: 1323.

[22]

Langford J I, Willson A J C. Scherrer after sixty years: a survey and some new results in the determination of crystallite size[J]. J Appl Cryst, 1978, 11: 102. doi: 10.1107/S0021889878012844

[23]

Cullity B D. Elements of X-ray diffraction. USA: Addision-Wesley Publishing, 1967

[24]

Güllü H H, Coskun E, Parlak M. Characterization of co-evaporated Cu–Ag–In–Se thin films[J]. Braz J Phys, 2014, 44(6): 719. doi: 10.1007/s13538-014-0270-2

[25]

Parlak M, Ercelebi C. The effect of substrate and post-annealing temperature on the structural and optical properties of polycrystalline InSe thin films[J]. Thin Solid Films, 1998, 322(1/2): 334.

[26]

Lopez-Garcia J, Guillen C. CuIn1−xAlxSe2 thin films obtained by selenization of evaporated metallic precursor layers[J]. Thin Solid Films, 2009, 517(7): 2240. doi: 10.1016/j.tsf.2008.10.095

[27]

Jaffe J E, Zunger A. Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors[J]. Phys Rev B, 1984, 29: 1882. doi: 10.1103/PhysRevB.29.1882

[28]

Revathi N, Prathap P, Ramakrishna Reddy K T. Thickness dependent physical properties of close space evaporated In2S3 films[J]. Solid State Sci, 2009, 11(7): 1288. doi: 10.1016/j.solidstatesciences.2009.04.019

[29]

Karaagac H, Parlak M. Deposition of AgGaS2 thin films by double source thermal evaporation technique[J]. J Mater Sci: Mater Electron, 2011, 22: 1426. doi: 10.1007/s10854-011-0325-x

[30]

Bube R H. Photoelectronic properties of semiconductors. Cambridge: Cambridge University Press, 1992

[31]

Bube R H. Photoconductivity of solids. New York: Interscience, 1960

Search

Advanced Search >>

GET CITATION

H. H. Güllü, M. Parlak. Investigation of post-thermal annealing on material properties of Cu–In–Zn–Se thin films[J]. J. Semicond., 2017, 38(12): 123001. doi: 10.1088/1674-4926/38/12/123001.

Export: BibTex EndNote

Article Metrics

Article views: 1687 Times PDF downloads: 15 Times Cited by: 0 Times

History

Manuscript received: 02 February 2017 Manuscript revised: 25 May 2017 Online: Uncorrected proof: 11 November 2017 Corrected proof: 15 November 2017 Published: 01 December 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误