J. Semicond. > Volume 37 > Issue 10 > Article Number: 102001

Electrical properties of sub-100 nm SiGe nanowires

B. Hamawandi 1, , M. Noroozi 1, , G. Jayakumar 2, , A. Ergül 1, 3, , K. Zahmatkesh 1, , M. S. Toprak 1, and H. H. Radamson 2,

+ Author Affilications + Find other works by these authors

PDF

Abstract: In this study, the electrical properties of SiGe nanowires in terms of process and fabrication integrity, measurement reliability, width scaling, and doping levels were investigated. Nanowires were fabricated on SiGe-on oxide (SGOI) wafers with thickness of 52 nm and Ge content of 47%. The first group of SiGe wires was initially formed by using conventional I-line lithography and then their size was longitudinally reduced by cutting with a focused ion beam (FIB) to any desired nanometer range down to 60 nm. The other nanowire group was manufactured directly to a chosen nanometer level by using sidewall transfer lithography (STL). It has been shown that the FIB fabrication process allows manipulation of the line width and doping level of nanowires using Ga atoms. The resistance of wires thinned by FIB was 10 times lower than STL wires which shows the possible dependency of electrical behavior on fabrication method.

Key words: SiGeFIBSTLpattern transfer lithographynanowires

Abstract: In this study, the electrical properties of SiGe nanowires in terms of process and fabrication integrity, measurement reliability, width scaling, and doping levels were investigated. Nanowires were fabricated on SiGe-on oxide (SGOI) wafers with thickness of 52 nm and Ge content of 47%. The first group of SiGe wires was initially formed by using conventional I-line lithography and then their size was longitudinally reduced by cutting with a focused ion beam (FIB) to any desired nanometer range down to 60 nm. The other nanowire group was manufactured directly to a chosen nanometer level by using sidewall transfer lithography (STL). It has been shown that the FIB fabrication process allows manipulation of the line width and doping level of nanowires using Ga atoms. The resistance of wires thinned by FIB was 10 times lower than STL wires which shows the possible dependency of electrical behavior on fabrication method.

Key words: SiGeFIBSTLpattern transfer lithographynanowires



References:

[1]

Noroozi M, Hamawandi B, Toprak M S. Fabrication and thermoelectric characterization of GeSn nanowires[J]. IEEE ULIS 2014 15th Int Conf Ultim Integr Silicon, 2014: 125.

[2]

Boukai A I, Bunimovich Y, Tahir-Kheli J. Silicon nanowires as efficient thermoelectric materials[J]. Nature, 2008, 451: 168. doi: 10.1038/nature06458

[3]

Jayakumar G, Garidis K, Hellstrom P E. Fabrication and characterization of silicon nanowires using STL for biosensing applications[J]. IEEE 2014 15th Int Conf Ultim Integr Silicon, 2014: 109.

[4]

Noroozi M, Ergul A, Abedin A. Fabrications of size-controlled SiGe nanowires using I-line lithography and focused ion beam technique[J]. ECS Trans, 2014, 64: 167.

[5]

Martinez J A, Provencio P P, Picraux S T. Enhanced thermoelectric figure of merit in SiGe alloy nanowires by boundary and hole-phonon scattering[J]. J Appl Phys, 2011, 110: 074317. doi: 10.1063/1.3647575

[6]

Halstedt J, Hellstro P E, Zhang Z. A robust spacer gate process for deca-nanometer high-frequency MOSFETs[J]. Microelectron Eng, 2006, 83: 434. doi: 10.1016/j.mee.2005.11.008

[7]

Burchhart T, Zeiner C, Lugstein A. Tuning the electrical performance of Ge nanowire MOSFETs by focused ion beam implantation[J]. Nanotechnology, 2011, 22: 035201. doi: 10.1088/0957-4484/22/3/035201

[8]

Gnaser H, Brodyanski A, Reuscher B. Focused ion beam implantation of Ga in Si and Ge: fluence-dependent retention and surface morphology[J]. Surf Interface Anal, 2008, 40: 1415. doi: 10.1002/sia.v40:11

[9]

Hållstedt J, Hellström P E, Radamson H H. Sidewall transfer lithography for reliable fabrication of nanowires and deca-nanometer MOSFETs[J]. Thin Solid Films, 2008, 517: 117. doi: 10.1016/j.tsf.2008.08.134

[10]

Jayakumar G, Asadollahi A, Hellström P E. Silicon nanowires integrated with CMOS circuits for biosensing application[J]. Solid State Electron, 2014, 98: 26. doi: 10.1016/j.sse.2014.04.005

[11]

Koleśnik-Gray M M, Lutz T, Collins G. Contact resistivity and suppression of Fermi level pinning in side-contacted germanium nanowires[J]. Appl Phys Lett, 2013, 103: 2013.

[12]

Wu X, Kulkarni J S, Collins G. Synthesis and electrical and mechanical properties of silicon and germanium nanowires[J]. Chem Mater, 2008, 20: 5954. doi: 10.1021/cm801104s

[13]

Bergin S M, Chen Y H, Rathmell A R. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films[J]. Nanoscale, 2012, 4: 1996. doi: 10.1039/c2nr30126a

[14]

Nur O, Willander M, Radamson H H. Strain characterization of CoSi2/n-Si0.1/p-Si heterostructures[J]. Appl Phys Lett, 1994, 64: 440. doi: 10.1063/1.111122

[15]

Haållstedt J, Blomqvist M, Persson P O. The effect of carbon and germanium on phase transformation of nickel on Si1-x-yGexCy epitaxial layers[J]. J Appl Phys, 2004, 95: 2397. doi: 10.1063/1.1645996

[16]

Bearden J A. X-ray wavelengths[J]. Rev Mod Phys, 1967, 39: 78. doi: 10.1103/RevModPhys.39.78

[1]

Noroozi M, Hamawandi B, Toprak M S. Fabrication and thermoelectric characterization of GeSn nanowires[J]. IEEE ULIS 2014 15th Int Conf Ultim Integr Silicon, 2014: 125.

[2]

Boukai A I, Bunimovich Y, Tahir-Kheli J. Silicon nanowires as efficient thermoelectric materials[J]. Nature, 2008, 451: 168. doi: 10.1038/nature06458

[3]

Jayakumar G, Garidis K, Hellstrom P E. Fabrication and characterization of silicon nanowires using STL for biosensing applications[J]. IEEE 2014 15th Int Conf Ultim Integr Silicon, 2014: 109.

[4]

Noroozi M, Ergul A, Abedin A. Fabrications of size-controlled SiGe nanowires using I-line lithography and focused ion beam technique[J]. ECS Trans, 2014, 64: 167.

[5]

Martinez J A, Provencio P P, Picraux S T. Enhanced thermoelectric figure of merit in SiGe alloy nanowires by boundary and hole-phonon scattering[J]. J Appl Phys, 2011, 110: 074317. doi: 10.1063/1.3647575

[6]

Halstedt J, Hellstro P E, Zhang Z. A robust spacer gate process for deca-nanometer high-frequency MOSFETs[J]. Microelectron Eng, 2006, 83: 434. doi: 10.1016/j.mee.2005.11.008

[7]

Burchhart T, Zeiner C, Lugstein A. Tuning the electrical performance of Ge nanowire MOSFETs by focused ion beam implantation[J]. Nanotechnology, 2011, 22: 035201. doi: 10.1088/0957-4484/22/3/035201

[8]

Gnaser H, Brodyanski A, Reuscher B. Focused ion beam implantation of Ga in Si and Ge: fluence-dependent retention and surface morphology[J]. Surf Interface Anal, 2008, 40: 1415. doi: 10.1002/sia.v40:11

[9]

Hållstedt J, Hellström P E, Radamson H H. Sidewall transfer lithography for reliable fabrication of nanowires and deca-nanometer MOSFETs[J]. Thin Solid Films, 2008, 517: 117. doi: 10.1016/j.tsf.2008.08.134

[10]

Jayakumar G, Asadollahi A, Hellström P E. Silicon nanowires integrated with CMOS circuits for biosensing application[J]. Solid State Electron, 2014, 98: 26. doi: 10.1016/j.sse.2014.04.005

[11]

Koleśnik-Gray M M, Lutz T, Collins G. Contact resistivity and suppression of Fermi level pinning in side-contacted germanium nanowires[J]. Appl Phys Lett, 2013, 103: 2013.

[12]

Wu X, Kulkarni J S, Collins G. Synthesis and electrical and mechanical properties of silicon and germanium nanowires[J]. Chem Mater, 2008, 20: 5954. doi: 10.1021/cm801104s

[13]

Bergin S M, Chen Y H, Rathmell A R. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films[J]. Nanoscale, 2012, 4: 1996. doi: 10.1039/c2nr30126a

[14]

Nur O, Willander M, Radamson H H. Strain characterization of CoSi2/n-Si0.1/p-Si heterostructures[J]. Appl Phys Lett, 1994, 64: 440. doi: 10.1063/1.111122

[15]

Haållstedt J, Blomqvist M, Persson P O. The effect of carbon and germanium on phase transformation of nickel on Si1-x-yGexCy epitaxial layers[J]. J Appl Phys, 2004, 95: 2397. doi: 10.1063/1.1645996

[16]

Bearden J A. X-ray wavelengths[J]. Rev Mod Phys, 1967, 39: 78. doi: 10.1103/RevModPhys.39.78

[1]

Hu Huiyong, Zhang Heming, Dai Xianying, Xuan Rongxi, Cui Xiaoying, Wang Qing, Jiang Tao. Transport Current Model of SiGe HBT. J. Semicond., 2006, 27(6): 1059.

[2]

Yang Hongbin, Fan Yongliang, Zhang Xiangjiu. Strain and Annealing Effect of SiGe/Si Heterostructure in Limited Area Grown by MBE. J. Semicond., 2007, 28(8): 1226.

[3]

Zeng Yugang, Han Genquan, Yu Jinzhong. Growth of SiGe by D-UHV/CVD at Low Temperature. J. Semicond., 2008, 29(10): 1889.

[4]

Cheng Buwen, Yao Fei, Xue Chunlai, Zhang Jianguo, Li Chuanbo, Mao Rongwei, Zuo Yuhua, Luo Liping, Wang Qiming. Strain Compensation in SiGe by Boron Doping. J. Semicond., 2005, 26(S1): 39.

[5]

Xu Yang, Wang Fei, Xu Jun, Liu Zhihong, Qian Peixin. Two Kinds of Patterned SiGe Epitaxial Growth Technologies. J. Semicond., 2006, 27(S1): 389.

[6]

Yang Hongbin, Fan Yongliang. Effect of Si Intermediate Layer on High Relaxed SiGe Layer Grown Using Low Temperature Si Buffer. J. Semicond., 2006, 27(S1): 144.

[7]

Jin Dongyue, Zhang Wanrong, Shen Pei, Xie Hongyun, Wang Yang. Multi-Finger Power SiGe HBT with Non-Uniform Finger Spacing. J. Semicond., 2007, 28(10): 1527.

[8]

Xue Chunlai, Shi Wenhua, Yao Fei, Cheng Buwen, Wang Hongjie, Yu Jinzhong, Wang Qiming. A Multi-Finger Si1-xGex/Si Heterojunction Bipolar Transistor for Wireless Power Amplifier Applications. J. Semicond., 2007, 28(4): 496.

[9]

Ma Desheng, Shi Yin, Dai Fa Foster. A Wide-Band Low Noise Amplifier for Terrestrial and Cable Receptions. J. Semicond., 2006, 27(6): 970.

[10]

Gu Ming, Shi Yin, Dai F F. A Wide-Band High-Linearity Down-Conversion Mixer for Cable Receptions. J. Semicond., 2006, 27(7): 1159.

[11]

Xie Zili, Zhang Rong, Gao Chao, Liu Bin, Li Liang, Xiu Xiangqian, Zhu Shunming, Gu Shulin, Han Ping, Jiang Ruolian, Shi Yi, Zheng Youdou. Fabrication and Characteristics of In2O3 Nanowires. J. Semicond., 2006, 27(3): 536.

[12]

Chang Peng, Liu Su, Chen Rongbo, Tang Ying, Han Genliang. Low Temperature Synthesis and Optical Properties of ZnO Nanowires. J. Semicond., 2007, 28(10): 1503.

[13]

Li Yuguo, Yang Aichun, Zhuo Boshi, Peng Ruiqin, Zheng Xuelei. Growth of SiO2 nanowires on different substrates using Au as a catalyst. J. Semicond., 2011, 32(2): 023002. doi: 10.1088/1674-4926/32/2/023002

[14]

Zhitao Han, Sisi Li, Junjun Li, Jinkui Chu, Yong Chen. Facile synthesis of ZnO nanowires on FTO glass for dye-sensitized solar cells. J. Semicond., 2013, 34(7): 074002. doi: 10.1088/1674-4926/34/7/074002

[15]

B. Shougaijam, R. Swain, C. Ngangbam, T.R. Lenka. Analysis of morphological, structural and electrical properties of annealed TiO2 nanowires deposited by GLAD technique. J. Semicond., 2017, 38(5): 053001. doi: 10.1088/1674-4926/38/5/053001

[16]

Li Fanghua, Jiang Zuimin. Growth and Shape Preservation of Self-Assembled SiGe Quantum Rings. J. Semicond., 2006, 27(S1): 148.

[17]

A. Singh, D. Kapoor, R. Sharma. Performance analysis of SiGe double-gate N-MOSFET. J. Semicond., 2017, 38(4): 044003. doi: 10.1088/1674-4926/38/4/044003

[18]

Chen Lei, Ruan Ying, Su Jie, Zhang Shulin, Shi Chunqi, Lai Zongsheng. A fully monolithic 0.18 μm SiGe BiCMOS power amplifier design. J. Semicond., 2011, 32(5): 055005. doi: 10.1088/1674-4926/32/5/055005

[19]

Hamed Ghodsi, Hassan Kaatuzian. Physical characteristics modification of a SiGe-HBT semiconductor device for performance improvement in a terahertz detecting system. J. Semicond., 2015, 36(5): 054010. doi: 10.1088/1674-4926/36/5/054010

[20]

K. Kacha, F. Djeffal, H. Ferhati, D. Arar, M. Meguellati. Numerical investigation of a double-junction a:SiGe thin-film solar cell including the multi-trench region. J. Semicond., 2015, 36(6): 064004. doi: 10.1088/1674-4926/36/6/064004

Search

Advanced Search >>

GET CITATION

B. Hamawandi, M. Noroozi, G. Jayakumar, A. Ergül, K. Zahmatkesh, M. S. Toprak, H. H. Radamson. Electrical properties of sub-100 nm SiGe nanowires[J]. J. Semicond., 2016, 37(10): 102001. doi: 10.1088/1674-4926/37/10/102001.

Export: BibTex EndNote

Article Metrics

Article views: 595 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 16 February 2016 Manuscript revised: 11 May 2016 Online: Published: 01 October 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误