ARTICLES

Performance of hydrogenated diamond field-effect transistors on single and polycrystalline diamond

Rui Zhou1, Cui Yu1, 2, Chuangjie Zhou1, 2, Jianchao Guo1, 2, Zezhao He1, 2, Yanfeng Wang3, Feng Qiu3, Hongxing Wang3, Shujun Cai1, and Zhihong Feng1, 2,

+ Author Affiliations

 Corresponding author: Shujun Cai, email: ececai@126.com; Zhihong Feng, ga917vv@163.com

PDF

Turn off MathJax

Abstract: In this work, we investigate the influence of defect concentration of the diamond substrates on the performance of hydrogen-terminated diamond field-effect transistors by Raman spectra, pulsed IV characteristics analysis, and radio frequency performances measurements. It is found that a sample with higher defect concentration shows larger drain-lag effect and lower large-signal output power density. Defects in the diamond act as traps in the carrier transport and have a considerable influence on the large-signal output power density of diamond field-effect transistors. This work should be helpful for further performance improvement of the microwave power diamond devices.

Key words: diamondtransistortrapdefectpower density



[1]
Wort C J H, Balmer R S. Diamond as an electronic material. Mater Today, 2008, 11(1/2), 22 doi: 10.1016/S1369-7021(07)70349-8
[2]
Hirama K, Sato H, Harada Y, et al. Thermally stable operation of H-terminated diamond FETs by NO2 adsorption and Al2O3 passivation. IEEE Electron Device Lett, 2012, 33(8), 1111 doi: 10.1109/LED.2012.2200230
[3]
Ueda K, Kasu M, Yamauchi Y, et al. Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz. IEEE Electron Device Lett, 2006, 27(7), 570 doi: 10.1109/LED.2006.876325
[4]
Imanishi S, Horikawa K, Oi N, et al. 3.8 W/mm RF power density for ALD Al2O3-based two-dimensional hole gas diamond MOSFET operating at saturation velocity. IEEE Electron Device Lett, 2018, 40(2), 279 doi: 10.1109/LED.2018.2886596
[5]
Yu C, Zhou C J, Guo J C, et al. RF performance of hydrogenated single crystal diamond MOSFETs. 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 2019
[6]
Camarchia V, Cappelluti F, Ghione G, et al. An overview on recent developments in RF and microwave power H-terminated diamond MESFET technology. International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC), 2014
[7]
Wang J J, He Z Z, Yu C, et al. Comparison of field-effect transistors on polycrystalline and single-crystal diamonds. Diamond Relat Mater, 2016, 70, 114 doi: 10.1016/j.diamond.2016.10.016
[8]
Koizumi S, Umezawa H, Pernot J, et al. Power electronics device applications of diamond semiconductors. Woodhead Publishing Series in Electronic and Optical Materials, 2018
[9]
Woltera S D, Praterb J T, Sitara Z. Raman spectroscopic characterization of diamond films grown in a low-pressure flat flame. J Cryst Growth, 2001, 226, 88 doi: 10.1016/S0022-0248(01)01274-X
[10]
Zhou C J, Wang J J, Guo J C, et al. Radio frequency performance of hydrogenated diamond MOSFETs with alumina. Appl Phys Lett, 2019, 114, 063501 doi: 10.1063/1.5066052
[11]
Yu C, Zhou C J, Guo J C, et al. 650 mW/mm output power density of H-terminated polycrystalline diamond MISFET at 10 GHz. Electron Lett, 2020, 56(7), 334 doi: 10.1049/el.2019.4110
[12]
Sato H, Kasu M. Maximum hole concentration for Hydrogen-terminated diamond surfaces with various surface orientations obtained by exposure to highly concentrated NO2. Diamond Relat Mater, 2013, 31, 47 doi: 10.1016/j.diamond.2012.10.007
[13]
Yamanaka S, Takeuchi D, Watanabe H, et al. Low-compensated boron-doped homoepitaxial diamond films using trimethylboron. Phys Status Solidi A, 1999, 174(1), 59 doi: 10.1002/(SICI)1521-396X(199907)174:1<59::AID-PSSA59>3.0.CO;2-A
[14]
Hirama K, Tuge K, Sato S, et al. High performance p-channel diamond metal-oxide-semiconductor field-effect transistors on H-terminated (111) surface. Appl Phys Express, 2010, 3(4), 044001 doi: 10.1143/APEX.3.044001
[15]
Russell S A O, Sharabi S, Tallaire A, et al. Hydrogen-terminated diamond field-effect transistors with cutoff frequency of 53 GHz. IEEE Electron Device Lett, 2012, 33(10), 1471 doi: 10.1109/LED.2012.2210020
[16]
Hirama K, Takayanagi H, Yamauchi S, et al. High-performance p-channel diamond MOSFETs with alumina gate insulator. IEDM Tech Dig, 2007, 873
[17]
Camarchia V, Cappelluti F, Ghione G, et al. RF power performance evaluation of surface channel diamond MESFETs. Solid-State Electron, 2011, 55(1), 19 doi: 10.1016/j.sse.2010.09.001
[18]
Yu X X, Zhou C J, Qi C J, et al. A high frequency hydrogen-terminated diamond MISFET With fT/fmax of 70/80 GHz. IEEE Electron Device Lett, 2018, 39(9), 1373 doi: 10.1109/LED.2018.2862158
[19]
Tasker P J, Hughes B. Importance of source and drain resistance to the maximum fT of millimeter-wave MODFETs. IEEE Electron Device Lett, 1989, 10(7), 291 doi: 10.1109/55.29656
[20]
Ivanov T G, Wei J, Shah P B, et al. Diamond RF transistor technology with ft = 41 GHz and fmax = 44 GHz. IEEE/MTT-S International Microwave Symposium - IMS, 2018, 1461
Fig. 1.  (Color online) (a) Raman spectra of the I-PC, II-PC, and III-SC diamond samples. (b) XRD pattern of I-PC, and II-PC diamond samples.

Fig. 2.  (Color online) Pulsed IV characteristics of III-SC diamond FET.

Fig. 3.  (Color online) Relationship of cutoff frequency fT with gate length for diamond FETs[2-4, 15-18].

Fig. 4.  (Color online) Large signal performance of I-PC diamond FET at 2 GHz power sweep (A-class).

Table 1.   Critical dimensions and DC characteristics of the diamond FETs.

Sample nameIds (mA/mm)gm (mS/mm)Gate length and source–drain spaceDrain-lag effect
I-PC32366T-gate, Lg = 350 nm, LSD = 3 μm, Wg = 100 μm × 22.7%
II-PC46658Rectangular gate, LG = 400 nm, LSD = 1.6 μm, Wg = 100 μm × 210%
III-SC23362T-gate, Lg = 350 nm, LSD = 2 μm, Wg = 100 μm × 23.7%
DownLoad: CSV

Table 2.   Component parameters for the three diamond FETs.

SampleCgs (fF)Cgd (fF)gm (mS)Ri (Ω)Rg (Ω)Rd (Ω)Rs (Ω)fT (GHz)fmax (GHz)
I-PC172.45.5422.3162349381730
II-PC102.417.620.714.63230.327.720.719.5
III-SC1308.920.87.81842352349
DownLoad: CSV

Table 3.   Compare of measured and calculated output power densities for the three diamond samples (I-PC, II-PC, and III-PC).

SampleMeasured output
power density (mW/mm)
Calculated output
power density (mW/mm)
Measured conditions
Vds(V)Vgs(V)
I-PC8771600–25–1.7
II-PC7452100–24–1
III-SC8151200–25–1
DownLoad: CSV
[1]
Wort C J H, Balmer R S. Diamond as an electronic material. Mater Today, 2008, 11(1/2), 22 doi: 10.1016/S1369-7021(07)70349-8
[2]
Hirama K, Sato H, Harada Y, et al. Thermally stable operation of H-terminated diamond FETs by NO2 adsorption and Al2O3 passivation. IEEE Electron Device Lett, 2012, 33(8), 1111 doi: 10.1109/LED.2012.2200230
[3]
Ueda K, Kasu M, Yamauchi Y, et al. Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz. IEEE Electron Device Lett, 2006, 27(7), 570 doi: 10.1109/LED.2006.876325
[4]
Imanishi S, Horikawa K, Oi N, et al. 3.8 W/mm RF power density for ALD Al2O3-based two-dimensional hole gas diamond MOSFET operating at saturation velocity. IEEE Electron Device Lett, 2018, 40(2), 279 doi: 10.1109/LED.2018.2886596
[5]
Yu C, Zhou C J, Guo J C, et al. RF performance of hydrogenated single crystal diamond MOSFETs. 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), 2019
[6]
Camarchia V, Cappelluti F, Ghione G, et al. An overview on recent developments in RF and microwave power H-terminated diamond MESFET technology. International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC), 2014
[7]
Wang J J, He Z Z, Yu C, et al. Comparison of field-effect transistors on polycrystalline and single-crystal diamonds. Diamond Relat Mater, 2016, 70, 114 doi: 10.1016/j.diamond.2016.10.016
[8]
Koizumi S, Umezawa H, Pernot J, et al. Power electronics device applications of diamond semiconductors. Woodhead Publishing Series in Electronic and Optical Materials, 2018
[9]
Woltera S D, Praterb J T, Sitara Z. Raman spectroscopic characterization of diamond films grown in a low-pressure flat flame. J Cryst Growth, 2001, 226, 88 doi: 10.1016/S0022-0248(01)01274-X
[10]
Zhou C J, Wang J J, Guo J C, et al. Radio frequency performance of hydrogenated diamond MOSFETs with alumina. Appl Phys Lett, 2019, 114, 063501 doi: 10.1063/1.5066052
[11]
Yu C, Zhou C J, Guo J C, et al. 650 mW/mm output power density of H-terminated polycrystalline diamond MISFET at 10 GHz. Electron Lett, 2020, 56(7), 334 doi: 10.1049/el.2019.4110
[12]
Sato H, Kasu M. Maximum hole concentration for Hydrogen-terminated diamond surfaces with various surface orientations obtained by exposure to highly concentrated NO2. Diamond Relat Mater, 2013, 31, 47 doi: 10.1016/j.diamond.2012.10.007
[13]
Yamanaka S, Takeuchi D, Watanabe H, et al. Low-compensated boron-doped homoepitaxial diamond films using trimethylboron. Phys Status Solidi A, 1999, 174(1), 59 doi: 10.1002/(SICI)1521-396X(199907)174:1<59::AID-PSSA59>3.0.CO;2-A
[14]
Hirama K, Tuge K, Sato S, et al. High performance p-channel diamond metal-oxide-semiconductor field-effect transistors on H-terminated (111) surface. Appl Phys Express, 2010, 3(4), 044001 doi: 10.1143/APEX.3.044001
[15]
Russell S A O, Sharabi S, Tallaire A, et al. Hydrogen-terminated diamond field-effect transistors with cutoff frequency of 53 GHz. IEEE Electron Device Lett, 2012, 33(10), 1471 doi: 10.1109/LED.2012.2210020
[16]
Hirama K, Takayanagi H, Yamauchi S, et al. High-performance p-channel diamond MOSFETs with alumina gate insulator. IEDM Tech Dig, 2007, 873
[17]
Camarchia V, Cappelluti F, Ghione G, et al. RF power performance evaluation of surface channel diamond MESFETs. Solid-State Electron, 2011, 55(1), 19 doi: 10.1016/j.sse.2010.09.001
[18]
Yu X X, Zhou C J, Qi C J, et al. A high frequency hydrogen-terminated diamond MISFET With fT/fmax of 70/80 GHz. IEEE Electron Device Lett, 2018, 39(9), 1373 doi: 10.1109/LED.2018.2862158
[19]
Tasker P J, Hughes B. Importance of source and drain resistance to the maximum fT of millimeter-wave MODFETs. IEEE Electron Device Lett, 1989, 10(7), 291 doi: 10.1109/55.29656
[20]
Ivanov T G, Wei J, Shah P B, et al. Diamond RF transistor technology with ft = 41 GHz and fmax = 44 GHz. IEEE/MTT-S International Microwave Symposium - IMS, 2018, 1461
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3214 Times PDF downloads: 49 Times Cited by: 0 Times

    History

    Received: 03 April 2020 Revised: 28 April 2020 Online: Accepted Manuscript: 28 July 2020Uncorrected proof: 31 July 2020Published: 08 December 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Rui Zhou, Cui Yu, Chuangjie Zhou, Jianchao Guo, Zezhao He, Yanfeng Wang, Feng Qiu, Hongxing Wang, Shujun Cai, Zhihong Feng. Performance of hydrogenated diamond field-effect transistors on single and polycrystalline diamond[J]. Journal of Semiconductors, 2020, 41(12): 122801. doi: 10.1088/1674-4926/41/12/122801 R Zhou, C Yu, C J Zhou, J C Guo, Z Z He, Y F Wang, F Qiu, H X Wang, S J Cai, Z H Feng, Performance of hydrogenated diamond field-effect transistors on single and polycrystalline diamond[J]. J. Semicond., 2020, 41(12): 122801. doi: 10.1088/1674-4926/41/12/122801.Export: BibTex EndNote
      Citation:
      Rui Zhou, Cui Yu, Chuangjie Zhou, Jianchao Guo, Zezhao He, Yanfeng Wang, Feng Qiu, Hongxing Wang, Shujun Cai, Zhihong Feng. Performance of hydrogenated diamond field-effect transistors on single and polycrystalline diamond[J]. Journal of Semiconductors, 2020, 41(12): 122801. doi: 10.1088/1674-4926/41/12/122801

      R Zhou, C Yu, C J Zhou, J C Guo, Z Z He, Y F Wang, F Qiu, H X Wang, S J Cai, Z H Feng, Performance of hydrogenated diamond field-effect transistors on single and polycrystalline diamond[J]. J. Semicond., 2020, 41(12): 122801. doi: 10.1088/1674-4926/41/12/122801.
      Export: BibTex EndNote

      Performance of hydrogenated diamond field-effect transistors on single and polycrystalline diamond

      doi: 10.1088/1674-4926/41/12/122801
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return