J. Semicond. > Volume 38 > Issue 12 > Article Number: 122003

Influence of oxygen doping on resistive-switching characteristic of a-Si/c-Si device

Jiahua Zhang , Da Chen and Shihua Huang ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The influence of oxygen doping on resistive-switching characteristics of Ag/a-Si/p+-c-Si device was investigated. By oxygen doping in the growth process of amorphous silicon, the device resistive-switching performances, such as the ON/OFF resistance ratios, yield and stability were improved, which may be ascribed to the significant reduction of defect density because of oxygen incorporation. The device I–V characteristics are strongly dependent on the oxygen doping concentration. As the oxygen doping concentration increases, the Si-rich device gradually transforms to an oxygen-rich device, and the device yield, switching characteristics, and stability may be improved for silver/oxygen-doped a-Si/p+-c-Si device. Finally, the device resistive-switching mechanism was analyzed.

Key words: amorphous siliconresistive switchingoxygen doping

Abstract: The influence of oxygen doping on resistive-switching characteristics of Ag/a-Si/p+-c-Si device was investigated. By oxygen doping in the growth process of amorphous silicon, the device resistive-switching performances, such as the ON/OFF resistance ratios, yield and stability were improved, which may be ascribed to the significant reduction of defect density because of oxygen incorporation. The device I–V characteristics are strongly dependent on the oxygen doping concentration. As the oxygen doping concentration increases, the Si-rich device gradually transforms to an oxygen-rich device, and the device yield, switching characteristics, and stability may be improved for silver/oxygen-doped a-Si/p+-c-Si device. Finally, the device resistive-switching mechanism was analyzed.

Key words: amorphous siliconresistive switchingoxygen doping



References:

[1]

You Z, Hu F, Huang L. A long lifetime, low error rate RRAM design with self-repair module[J]. J Semicond, 2016, 37: 115004. doi: 10.1088/1674-4926/37/11/115004

[2]

Yang J, Dai Y, Lu S. Physical mechanism of resistance switching in the co-doped RRAM[J]. J Semicond, 2017, 38: 014008. doi: 10.1088/1674-4926/38/1/014008

[3]

Feng L W, Chang C Y, Chang T C. Role of germanium in the reduced temperature dependence of Ti-based nanocrystals formation for nonvolatile memory applications[J]. Appl Phys Lett, 2009, 95: 262110. doi: 10.1063/1.3279131

[4]

Sawa A. Resistive switching in transition metal oxides[J]. J Mater Today, 2008, 11: 28.

[5]

Den B W. Threshold switching in hydrogenated amorphous silicon[J]. Appl Phys Lett, 1982, 40: 812. doi: 10.1063/1.93269

[6]

Lecomber P G, Owen A E, Spear W E. The switching mechanism in amorphous silicon junctions[J]. Non-Crystal Solids, 1985, 77/78: 1373. doi: 10.1016/0022-3093(85)90912-3

[7]

Owen A E, Le Comber P G, Hajto J. Switching in amorphous devices[J]. INT J Electron, 1992, 73: 897. doi: 10.1080/00207219208925733

[8]

Jafar M, Haneman D. Switching in amorphous-silicon devices[J]. Phys Rev B, 1994, 49: 13611. doi: 10.1103/PhysRevB.49.13611

[9]

Avila A, Asomoza R. Switching in coplanar amorphous hydrogenated silicon devices[J]. Solid State Electron, 2000, 44: 17. doi: 10.1016/S0038-1101(99)00182-3

[10]

Hu J, Branz H M, Crandall R S. Switching and filament formation in hot-wire CVD p-type a-Si:H devices[J]. Thin Solid Films, 2003, 430: 249. doi: 10.1016/S0040-6090(03)00117-2

[11]

Gao L, Lee S B, Hoskins B. Dynamic switching mechanism of conduction set process in Cu/a-Si/Si memristive device[J]. Appl Phys Lett, 2013, 103: 043503. doi: 10.1063/1.4816327

[12]

Zhang L, Redolfi A, Adelmann C. Ultrathin metal/amorphous silicon/metal diode for bipolar RRAM selector applications[J]. IEEE Electron Dev Lett, 2014, 35: 199. doi: 10.1109/LED.2013.2293591

[13]

Chen D, Huang S H, He L. Effect of oxygen concentration on resistive switching behavior in silicon oxynitride film[J]. J Semicond, 2017, 38: 043002. doi: 10.1088/1674-4926/38/4/043002

[14]

Sung H J, Wei L. CMOS compatible nanoscale nonvolatile resistance switching memory[J]. Nano Lett, 2008, 8: 392. doi: 10.1021/nl073225h

[15]

Kerr J A. CRC handbook of chemistry and physics. 81st ed. CRC Press Boca Raton Florida USA, 2000

[16]

Benson S W. III-Bond energies[J]. Chem Educ, 1965, 42: 502. doi: 10.1021/ed042p502

[17]

Simmons J G. Poole-Frenkel effect and Schottky effect in metal–insulator–metal systems[J]. Phys Rev, 1967, 155: 657. doi: 10.1103/PhysRev.155.657

[18]

Chang J P, Lin Y S. Dielectric property and conduction mechanism of ultrathin zirconium oxide films[J]. Appl Phys Lett, 2001, 79: 3666. doi: 10.1063/1.1418265

[19]

Schnable G L, Kern W, Comizzoli R B. Passivation coatings on silicon devices[J]. J Electrochem Soc, 1975, 122: 1092. doi: 10.1149/1.2134402

[20]

Mehonic A, Cueff S, Wojdak M. Resistive switching in silicon suboxide films[J]. J Appl Phys, 2012, 111: 074507. doi: 10.1063/1.3701581

[21]

Chang Y F, Fowler B, Chen Y C. Intrinsic SiOx-based unipolar resistive switching memory. II. Thermal effects on charge transport and characterization of multilevel programing[J]. J Appl Phys, 2014, 116: 043709. doi: 10.1063/1.4891244

[22]

Argall F. Switching phenomena in titanium oxide thin films[J]. Solid State Electronics, 1968, 11: 535. doi: 10.1016/0038-1101(68)90092-0

[23]

Lunnon M E, Greve D W. The microstructure of programmed n+pn+ polycrystalline antifuses[J]. J Appl Phys, 1983, 54: 3278. doi: 10.1063/1.332438

[24]

Ansari A A, Qadeer A. Memory switching in thermally grown titanium oxide films[J]. J Phys D, 1985, 18: 911. doi: 10.1088/0022-3727/18/5/015

[25]

Mehonic A, Cueff S, Wojdak M. Resistive switching in silicon suboxide films[J]. J Appl Phys, 2012, 111: 074507. doi: 10.1063/1.3701581

[1]

You Z, Hu F, Huang L. A long lifetime, low error rate RRAM design with self-repair module[J]. J Semicond, 2016, 37: 115004. doi: 10.1088/1674-4926/37/11/115004

[2]

Yang J, Dai Y, Lu S. Physical mechanism of resistance switching in the co-doped RRAM[J]. J Semicond, 2017, 38: 014008. doi: 10.1088/1674-4926/38/1/014008

[3]

Feng L W, Chang C Y, Chang T C. Role of germanium in the reduced temperature dependence of Ti-based nanocrystals formation for nonvolatile memory applications[J]. Appl Phys Lett, 2009, 95: 262110. doi: 10.1063/1.3279131

[4]

Sawa A. Resistive switching in transition metal oxides[J]. J Mater Today, 2008, 11: 28.

[5]

Den B W. Threshold switching in hydrogenated amorphous silicon[J]. Appl Phys Lett, 1982, 40: 812. doi: 10.1063/1.93269

[6]

Lecomber P G, Owen A E, Spear W E. The switching mechanism in amorphous silicon junctions[J]. Non-Crystal Solids, 1985, 77/78: 1373. doi: 10.1016/0022-3093(85)90912-3

[7]

Owen A E, Le Comber P G, Hajto J. Switching in amorphous devices[J]. INT J Electron, 1992, 73: 897. doi: 10.1080/00207219208925733

[8]

Jafar M, Haneman D. Switching in amorphous-silicon devices[J]. Phys Rev B, 1994, 49: 13611. doi: 10.1103/PhysRevB.49.13611

[9]

Avila A, Asomoza R. Switching in coplanar amorphous hydrogenated silicon devices[J]. Solid State Electron, 2000, 44: 17. doi: 10.1016/S0038-1101(99)00182-3

[10]

Hu J, Branz H M, Crandall R S. Switching and filament formation in hot-wire CVD p-type a-Si:H devices[J]. Thin Solid Films, 2003, 430: 249. doi: 10.1016/S0040-6090(03)00117-2

[11]

Gao L, Lee S B, Hoskins B. Dynamic switching mechanism of conduction set process in Cu/a-Si/Si memristive device[J]. Appl Phys Lett, 2013, 103: 043503. doi: 10.1063/1.4816327

[12]

Zhang L, Redolfi A, Adelmann C. Ultrathin metal/amorphous silicon/metal diode for bipolar RRAM selector applications[J]. IEEE Electron Dev Lett, 2014, 35: 199. doi: 10.1109/LED.2013.2293591

[13]

Chen D, Huang S H, He L. Effect of oxygen concentration on resistive switching behavior in silicon oxynitride film[J]. J Semicond, 2017, 38: 043002. doi: 10.1088/1674-4926/38/4/043002

[14]

Sung H J, Wei L. CMOS compatible nanoscale nonvolatile resistance switching memory[J]. Nano Lett, 2008, 8: 392. doi: 10.1021/nl073225h

[15]

Kerr J A. CRC handbook of chemistry and physics. 81st ed. CRC Press Boca Raton Florida USA, 2000

[16]

Benson S W. III-Bond energies[J]. Chem Educ, 1965, 42: 502. doi: 10.1021/ed042p502

[17]

Simmons J G. Poole-Frenkel effect and Schottky effect in metal–insulator–metal systems[J]. Phys Rev, 1967, 155: 657. doi: 10.1103/PhysRev.155.657

[18]

Chang J P, Lin Y S. Dielectric property and conduction mechanism of ultrathin zirconium oxide films[J]. Appl Phys Lett, 2001, 79: 3666. doi: 10.1063/1.1418265

[19]

Schnable G L, Kern W, Comizzoli R B. Passivation coatings on silicon devices[J]. J Electrochem Soc, 1975, 122: 1092. doi: 10.1149/1.2134402

[20]

Mehonic A, Cueff S, Wojdak M. Resistive switching in silicon suboxide films[J]. J Appl Phys, 2012, 111: 074507. doi: 10.1063/1.3701581

[21]

Chang Y F, Fowler B, Chen Y C. Intrinsic SiOx-based unipolar resistive switching memory. II. Thermal effects on charge transport and characterization of multilevel programing[J]. J Appl Phys, 2014, 116: 043709. doi: 10.1063/1.4891244

[22]

Argall F. Switching phenomena in titanium oxide thin films[J]. Solid State Electronics, 1968, 11: 535. doi: 10.1016/0038-1101(68)90092-0

[23]

Lunnon M E, Greve D W. The microstructure of programmed n+pn+ polycrystalline antifuses[J]. J Appl Phys, 1983, 54: 3278. doi: 10.1063/1.332438

[24]

Ansari A A, Qadeer A. Memory switching in thermally grown titanium oxide films[J]. J Phys D, 1985, 18: 911. doi: 10.1088/0022-3727/18/5/015

[25]

Mehonic A, Cueff S, Wojdak M. Resistive switching in silicon suboxide films[J]. J Appl Phys, 2012, 111: 074507. doi: 10.1063/1.3701581

Search

Advanced Search >>

GET CITATION

J H Zhang, D Chen, S H Huang. Influence of oxygen doping on resistive-switching characteristic of a-Si/c-Si device[J]. J. Semicond., 2017, 38(12): 122003. doi: 10.1088/1674-4926/38/12/122003.

Export: BibTex EndNote

Article Metrics

Article views: 1861 Times PDF downloads: 12 Times Cited by: 0 Times

History

Manuscript received: 29 May 2017 Manuscript revised: 15 June 2017 Online: Uncorrected proof: 11 November 2017 Corrected proof: 15 November 2017 Published: 01 December 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误