RESEARCH HIGHLIGHTS

To enhance the performance of n-type organic thermoelectric materials

Xin Wang1, Yongqiang Shi1, and Liming Ding2,

+ Author Affiliations

 Corresponding author: Yongqiang Shi, shiyq@ahnu.edu.cn; Liming Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Guo X, Facchetti A. The journey of conducting polymers from discovery to application. Nat Mater, 2020, 19, 922 doi: 10.1038/s41563-020-0778-5
[2]
Kiefer D, Kroon R, Hofmann A I, et al. Double doping of conjugated polymers with monomer molecular dopants. Nat Mater, 2019, 18, 149 doi: 10.1038/s41563-018-0263-6
[3]
Lu Y, Wang J, Pei J. Strategies to enhance the conductivity of n-type polymer thermoelectric materials. Chem Mater, 2019, 31, 6412 doi: 10.1021/acs.chemmater.9b01422
[4]
Zhang F, Di C. Exploring thermoelectric materials from high mobility organic semiconductors. Chem Mater, 2020, 32, 2688 doi: 10.1021/acs.chemmater.0c00229
[5]
Jin K, Hao F, Ding L. Solution-processable n-type organic thermoelectric materials. Sci Bull, 2020, 65, 1862 doi: 10.1016/j.scib.2020.07.036
[6]
Xu K, Sun H, Ruoko T P, et al. Ground-state electron transfer in all-polymer donor–acceptor heterojunctions. Nat Mater, 2020, 19, 738 doi: 10.1038/s41563-020-0618-7
[7]
Wang S, Sun H, Ail U, et al. Thermoelectric properties of solution-processed n-doped ladder-type conducting polymers. Adv Mater, 2016, 28, 10764 doi: 10.1002/adma.201603731
[8]
Lu Y, Yu Z, Zhang R, et al. Rigid coplanar polymers for stable n-type polymer thermoelectrics. Angew Chem Int Ed, 2019, 58, 11390 doi: 10.1002/anie.201905835
[9]
Chen H, Moser M, Wang S, et al. Acene ring size optimization in fused lactam polymers enabling high n-type organic thermoelectric performance. J Am Chem Soc, 2021, 143, 260 doi: 10.1021/jacs.0c10365
[10]
Yang C, Jin W, Wang J, et al. Enhancing the n-type conductivity and thermoelectric performance of donor–acceptor copolymers through donor engineering. Adv Mater, 2018, 30, 1802850 doi: 10.1002/adma.201802850
[11]
Shi Y, Ding L. n-Type acceptor-acceptor polymer semiconductors. J Semicond, 2021, 42, 100202 doi: 10.1088/1674-4726/42/10/100202
[12]
Shi Y, Wang Y, Guo X. Recent progress of imide-functionalized n-type polymer semiconductors. Acta Polym Sin, 2019, 50, 873
[13]
Ji X, Xiao Z, Sun H, et al. Polymer acceptors for all-polymer solar cells. J Semicond, 2021, 42, 080202 doi: 10.1088/1674-4926/42/8/080202
[14]
Wang S, Sun H, Erdmann T, et al. A chemically doped naphthalenediimide-bithiazole polymer for n-type organic thermoelectrics. Adv Mater, 2018, 30, 1801898 doi: 10.1002/adma.201801898
[15]
Wang Y, Nakano M, Michinobu T, et al. Naphthodithiophenediimide–benzobisthiadiazole-based polymers: versatile n-type materials for field-effect transistors and thermoelectric devices. Macromolecules, 2017, 50, 857 doi: 10.1021/acs.macromol.6b02313
[16]
Wang Y, Takimiya K. Naphthodithiophenediimide–bithiopheneimide copolymers for high-performance n-type organic thermoelectrics: significant impact of backbone orientation on conductivity and thermoelectric performance. Adv Mater, 2020, 32, 2002060 doi: 10.1002/adma.202002060
[17]
Shi K, Zhang F, Di C, et al. Toward high performance n-type thermoelectric materials by rational modification of BDPPV backbones. J Am Chem Soc, 2015, 137, 6979 doi: 10.1021/jacs.5b00945
[18]
Lu Y, Yu Z, Un H I, et al. Persistent conjugated backbone and disordered lamellar packing impart polymers with efficient n-doping and high conductivities. Adv Mater, 2020, 33, 2005946 doi: 10.1002/adma.202005946
[19]
Yan X, Xiong M, Li J, et al. Pyrazine-flanked diketopyrrolopyrrole (DPP): A new polymer building block for high-performance n-type organic thermoelectrics. J Am Chem Soc, 2019, 141, 20215 doi: 10.1021/jacs.9b10107
[20]
Shi Y, Guo H, Qin M, et al. Thiazole imide-based all-acceptor homopolymer: Achieving high-performance unipolar electron transport in organic thin-film transistors. Adv Mater, 2018, 30, 1705745 doi: 10.1002/adma.201705745
[21]
Shi Y, Guo H, Qin M, et al. Imide-functionalized thiazole-based polymer semiconductors: Synthesis, structure–property correlations, charge carrier polarity, and thin-film transistor performance. Chem Mater, 2018, 30, 7988 doi: 10.1021/acs.chemmater.8b03670
[22]
Liu J, Shi Y, Dong J, et al. Overcoming Coulomb interaction improves free-charge generation and thermoelectric properties for n-doped conjugated polymers. ACS Energy Lett, 2019, 4, 1556 doi: 10.1021/acsenergylett.9b00977
[23]
Feng K, Guo H, Wang J, et al. Cyano-functionalized bithiophene imide-based n-type polymer semiconductors: Synthesis, structure–property correlations, and thermoelectric performance. J Am Chem Soc, 2021, 143, 1539 doi: 10.1021/jacs.0c11608
[24]
Zhao R, Liu J, Wang L. Polymer acceptors containing B←N units for organic photovoltaics. Acc Chem Res, 2020, 53, 1557 doi: 10.1021/acs.accounts.0c00281
[25]
Dong C, Deng S, Meng B, et al. Distannylated monomer of strong electron-accepting organoboron building block: Enabling acceptor-acceptor type conjugated polymers for n-type thermoelectric applications. Angew Chem Int Ed, 2021, 60, 16184 doi: 10.1002/anie.202105127
[26]
Liu J, Qiu L, Alessandri R, et al. Enhancing molecular n-type doping of donor–acceptor copolymers by tailoring side chains. Adv Mater, 2018, 30, 1704630 doi: 10.1002/adma.201704630
[27]
Liu J, Ye G, Zee B, et al. n-type organic thermoelectrics of donor–acceptor copolymers: improved power factor by molecular tailoring of the density of States. Adv Mater, 2018, 30, 1804290 doi: 10.1002/adma.201804290
[28]
Kiefer D, Giovannitti A, Sun H, et al. Enhanced n-doping efficiency of a naphthalenediimide-based copolymer through polar side chains for organic thermoelectrics. ACS Energy Lett, 2018, 3, 278 doi: 10.1021/acsenergylett.7b01146
Fig. 1.  The chemical structures of representative n-type OTE materials.

Table 1.   Performance data for n-type OTE materials.

Polymerσ (S/cm)S (μV/K)PF (μW/(m·K2))Ref.
P(NDI2OD-T2)0.0030.012[7]
P(NDI2OD-Tz2)0.1–447 ± 151.5[14]
PNDTI-BBT-DP5–16914.2[15]
FBDPPV14–14128[17]
LPPV-11.1–1701.96[8]
N-N0.653.2[9]
PDPF1.30–2354.65[10]
P(PzDPP-CT2)8.457.3[19]
PNB-TzDP11.653.4[16]
PDTzTI4.6–1297.6[22]
PCNI-BTI23.3–83.310.0[23]
PBN-197.8–178.824.8[25]
TEG-N22000.170.40[26]
PNDI2TEG-2Tz0.18–159 ± 1584.6 ± 0.2[27]
P(gNDI-gT2)0.3–930.4[28]
DownLoad: CSV
[1]
Guo X, Facchetti A. The journey of conducting polymers from discovery to application. Nat Mater, 2020, 19, 922 doi: 10.1038/s41563-020-0778-5
[2]
Kiefer D, Kroon R, Hofmann A I, et al. Double doping of conjugated polymers with monomer molecular dopants. Nat Mater, 2019, 18, 149 doi: 10.1038/s41563-018-0263-6
[3]
Lu Y, Wang J, Pei J. Strategies to enhance the conductivity of n-type polymer thermoelectric materials. Chem Mater, 2019, 31, 6412 doi: 10.1021/acs.chemmater.9b01422
[4]
Zhang F, Di C. Exploring thermoelectric materials from high mobility organic semiconductors. Chem Mater, 2020, 32, 2688 doi: 10.1021/acs.chemmater.0c00229
[5]
Jin K, Hao F, Ding L. Solution-processable n-type organic thermoelectric materials. Sci Bull, 2020, 65, 1862 doi: 10.1016/j.scib.2020.07.036
[6]
Xu K, Sun H, Ruoko T P, et al. Ground-state electron transfer in all-polymer donor–acceptor heterojunctions. Nat Mater, 2020, 19, 738 doi: 10.1038/s41563-020-0618-7
[7]
Wang S, Sun H, Ail U, et al. Thermoelectric properties of solution-processed n-doped ladder-type conducting polymers. Adv Mater, 2016, 28, 10764 doi: 10.1002/adma.201603731
[8]
Lu Y, Yu Z, Zhang R, et al. Rigid coplanar polymers for stable n-type polymer thermoelectrics. Angew Chem Int Ed, 2019, 58, 11390 doi: 10.1002/anie.201905835
[9]
Chen H, Moser M, Wang S, et al. Acene ring size optimization in fused lactam polymers enabling high n-type organic thermoelectric performance. J Am Chem Soc, 2021, 143, 260 doi: 10.1021/jacs.0c10365
[10]
Yang C, Jin W, Wang J, et al. Enhancing the n-type conductivity and thermoelectric performance of donor–acceptor copolymers through donor engineering. Adv Mater, 2018, 30, 1802850 doi: 10.1002/adma.201802850
[11]
Shi Y, Ding L. n-Type acceptor-acceptor polymer semiconductors. J Semicond, 2021, 42, 100202 doi: 10.1088/1674-4726/42/10/100202
[12]
Shi Y, Wang Y, Guo X. Recent progress of imide-functionalized n-type polymer semiconductors. Acta Polym Sin, 2019, 50, 873
[13]
Ji X, Xiao Z, Sun H, et al. Polymer acceptors for all-polymer solar cells. J Semicond, 2021, 42, 080202 doi: 10.1088/1674-4926/42/8/080202
[14]
Wang S, Sun H, Erdmann T, et al. A chemically doped naphthalenediimide-bithiazole polymer for n-type organic thermoelectrics. Adv Mater, 2018, 30, 1801898 doi: 10.1002/adma.201801898
[15]
Wang Y, Nakano M, Michinobu T, et al. Naphthodithiophenediimide–benzobisthiadiazole-based polymers: versatile n-type materials for field-effect transistors and thermoelectric devices. Macromolecules, 2017, 50, 857 doi: 10.1021/acs.macromol.6b02313
[16]
Wang Y, Takimiya K. Naphthodithiophenediimide–bithiopheneimide copolymers for high-performance n-type organic thermoelectrics: significant impact of backbone orientation on conductivity and thermoelectric performance. Adv Mater, 2020, 32, 2002060 doi: 10.1002/adma.202002060
[17]
Shi K, Zhang F, Di C, et al. Toward high performance n-type thermoelectric materials by rational modification of BDPPV backbones. J Am Chem Soc, 2015, 137, 6979 doi: 10.1021/jacs.5b00945
[18]
Lu Y, Yu Z, Un H I, et al. Persistent conjugated backbone and disordered lamellar packing impart polymers with efficient n-doping and high conductivities. Adv Mater, 2020, 33, 2005946 doi: 10.1002/adma.202005946
[19]
Yan X, Xiong M, Li J, et al. Pyrazine-flanked diketopyrrolopyrrole (DPP): A new polymer building block for high-performance n-type organic thermoelectrics. J Am Chem Soc, 2019, 141, 20215 doi: 10.1021/jacs.9b10107
[20]
Shi Y, Guo H, Qin M, et al. Thiazole imide-based all-acceptor homopolymer: Achieving high-performance unipolar electron transport in organic thin-film transistors. Adv Mater, 2018, 30, 1705745 doi: 10.1002/adma.201705745
[21]
Shi Y, Guo H, Qin M, et al. Imide-functionalized thiazole-based polymer semiconductors: Synthesis, structure–property correlations, charge carrier polarity, and thin-film transistor performance. Chem Mater, 2018, 30, 7988 doi: 10.1021/acs.chemmater.8b03670
[22]
Liu J, Shi Y, Dong J, et al. Overcoming Coulomb interaction improves free-charge generation and thermoelectric properties for n-doped conjugated polymers. ACS Energy Lett, 2019, 4, 1556 doi: 10.1021/acsenergylett.9b00977
[23]
Feng K, Guo H, Wang J, et al. Cyano-functionalized bithiophene imide-based n-type polymer semiconductors: Synthesis, structure–property correlations, and thermoelectric performance. J Am Chem Soc, 2021, 143, 1539 doi: 10.1021/jacs.0c11608
[24]
Zhao R, Liu J, Wang L. Polymer acceptors containing B←N units for organic photovoltaics. Acc Chem Res, 2020, 53, 1557 doi: 10.1021/acs.accounts.0c00281
[25]
Dong C, Deng S, Meng B, et al. Distannylated monomer of strong electron-accepting organoboron building block: Enabling acceptor-acceptor type conjugated polymers for n-type thermoelectric applications. Angew Chem Int Ed, 2021, 60, 16184 doi: 10.1002/anie.202105127
[26]
Liu J, Qiu L, Alessandri R, et al. Enhancing molecular n-type doping of donor–acceptor copolymers by tailoring side chains. Adv Mater, 2018, 30, 1704630 doi: 10.1002/adma.201704630
[27]
Liu J, Ye G, Zee B, et al. n-type organic thermoelectrics of donor–acceptor copolymers: improved power factor by molecular tailoring of the density of States. Adv Mater, 2018, 30, 1804290 doi: 10.1002/adma.201804290
[28]
Kiefer D, Giovannitti A, Sun H, et al. Enhanced n-doping efficiency of a naphthalenediimide-based copolymer through polar side chains for organic thermoelectrics. ACS Energy Lett, 2018, 3, 278 doi: 10.1021/acsenergylett.7b01146
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1333 Times PDF downloads: 74 Times Cited by: 0 Times

    History

    Received: 17 October 2021 Revised: Online: Accepted Manuscript: 18 October 2021Uncorrected proof: 19 October 2021Published: 01 February 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xin Wang, Yongqiang Shi, Liming Ding. To enhance the performance of n-type organic thermoelectric materials[J]. Journal of Semiconductors, 2022, 43(2): 020202. doi: 10.1088/1674-4926/43/2/020202 X Wang, Y Q Shi, L M Ding, To enhance the performance of n-type organic thermoelectric materials[J]. J. Semicond., 2022, 43(2): 020202. doi: 10.1088/1674-4926/43/2/020202.Export: BibTex EndNote
      Citation:
      Xin Wang, Yongqiang Shi, Liming Ding. To enhance the performance of n-type organic thermoelectric materials[J]. Journal of Semiconductors, 2022, 43(2): 020202. doi: 10.1088/1674-4926/43/2/020202

      X Wang, Y Q Shi, L M Ding, To enhance the performance of n-type organic thermoelectric materials[J]. J. Semicond., 2022, 43(2): 020202. doi: 10.1088/1674-4926/43/2/020202.
      Export: BibTex EndNote

      To enhance the performance of n-type organic thermoelectric materials

      doi: 10.1088/1674-4926/43/2/020202
      More Information
      • Author Bio:

        Xin Wang got his BS from Anhui Normal University in 2019. Now he is a master student at Anhui Normal University under the supervision of Prof. Yongqiang Shi and Prof. Xianwen Wei. His work focuses on the synthesis of n-type polymer semiconductors

        Yongqiang Shi received his PhD from Southwest Petroleum University in 2020. He was a visiting student in Xugang Guo Group at Southern University of Science and Technology in 2017–2020. In December 2020, he joined Anhui Normal University. His research focuses on the design and synthesis of n-type polymers for organic thin-film transistors, polymer solar cells, perovskite solar cells, and organic thermoelectrics

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editors for Science Bulletin and Journal of Semiconductors

      • Corresponding author: shiyq@ahnu.edu.cnding@nanoctr.cn
      • Received Date: 2021-10-17
      • Published Date: 2022-02-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return