J. Semicond. > Volume 37 > Issue 9 > Article Number: 095003

A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission

Zhang Zhang , Ye Tan , Jianmin Zeng , Xu Han , Xin Cheng and Guangjun Xie ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission is presented. Data and power are transmitted to the stimulator by mutual inductance coupling, while the in-vitro controller encodes the stimulation parameters. The stimulator integrates the digital control module and can generate the bipolar current with equal amplitude in four channels. In order to reduce power consumption, a novel controlled threshold voltage cancellation rectifier is proposed in this paper to provide the supply voltage of the stimulator. The monolithic stimulator was fabricated in a SMIC 0.18 μm 1-poly 6-metal mixed-signal CMOS process, occupying 0.23 mm2, and consumes 180 μW on average. Compared with previously published stimulators, this design has advantages of large stimulated current (0-0.8 mA) with the double low-voltage supply (1.8 and 3.3 V), and high-level integration.

Key words: deep brain stimulatorwireless transmissionmonolithicbipolar current

Abstract: A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission is presented. Data and power are transmitted to the stimulator by mutual inductance coupling, while the in-vitro controller encodes the stimulation parameters. The stimulator integrates the digital control module and can generate the bipolar current with equal amplitude in four channels. In order to reduce power consumption, a novel controlled threshold voltage cancellation rectifier is proposed in this paper to provide the supply voltage of the stimulator. The monolithic stimulator was fabricated in a SMIC 0.18 μm 1-poly 6-metal mixed-signal CMOS process, occupying 0.23 mm2, and consumes 180 μW on average. Compared with previously published stimulators, this design has advantages of large stimulated current (0-0.8 mA) with the double low-voltage supply (1.8 and 3.3 V), and high-level integration.

Key words: deep brain stimulatorwireless transmissionmonolithicbipolar current



References:

[1]

Lee H M, Kwon K Y, Li W. A power-efficient switched-capacitor stimulating system for electrical/optical deep-brain stimulation[J]. IEEE J Solid-State Circuits, 2015, 50(1): 360. doi: 10.1109/JSSC.2014.2355814

[2]

Kwon K Y, Lee H M, Ghovanloo M. A wireless slanted optrode array with integrated micro leds for optogenetics[J]. IEEE International Conference on Micro Electro Mechanical Systems, 2014: 813.

[3]

Noorsal E, Sooksood K, Xu H. A neural stimulator frontend with high-voltage compliance and programmable pulse shape for epiretinal implants[J]. IEEE J Solid-State Circuits, 2012, 47(1): 244. doi: 10.1109/JSSC.2011.2164667

[4]

Xu H, Noorsal E, Sooksood K, et al. A multichannel neurostimulator with transcutaneous closed-loop power control and self-adaptive supply. IEEE Eur Solid-State Circuits Conf (ESH. SCIRC), 2012: 309

[5]

Chen Kuanfu, Yang Zhi, Hoang Linh. An integrated 256-channel epiretinal prosthesis[J]. IEEE J Solid-State Circuits, 2010, 45(9): 1946. doi: 10.1109/JSSC.2010.2055371

[6]

Wang G, Wang P, Tang Y. Analysis of dual band power and data telemetry for biomedical implants[J]. IEEE Trans Biomed Circuits Syst, 2012, 6(3): 208. doi: 10.1109/TBCAS.2011.2171958

[7]

Kiani M, Ghovanloo M. A 20 Mb/s pulse harmonic modulation transceiver for wideband near-field data transmission[J]. IEEE Trans Circuits Syst Ⅱ, 2013, 60(7): 382.

[8]

Lee H M, Park H, Ghovanloo M. A power-efficient wireless system with adaptive supply control for deep brain stimulation[J]. IEEE J Solid-State Circuits, 2013, 48(9): 2203. doi: 10.1109/JSSC.2013.2266862

[9]

Kiani M, Ghovanloo M. A 13.56-Mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission[J]. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9(1): 1. doi: 10.1109/TBCAS.2014.2304956

[10]

Han Xu, Zhang Zhang, Tan Ye, et al. A 13.56 MHz low-voltage RF-DC rectifier with controlled Vth cancellation technique. IEEE International Symposium on Radio-Frequency Integration Technology, 2014: TH-IF-4

[11]

Mohanasankar S, Liu W, Mark S. A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device[J]. IEEE J Solid-State Circuits, 2005, 40(3): 763. doi: 10.1109/JSSC.2005.843630

[12]

Constandinou T G, Georgiou J, Toumazou C. A partial-current steering biphasic stimulation driver for vestibular prostheses[J]. IEEE Trans Biomedical Circuits Syst, 2008, 2(2): 106. doi: 10.1109/TBCAS.2008.927238

[13]

Mounaim F, Sawan M. Toward a fully integrated neurostimulator with inductive power recovery front-end[J]. IEEE Trans Biomedical Circuits and Systems, 2012, 6(4): 309. doi: 10.1109/TBCAS.2012.2185796

[14]

Williams I, Constandinou T G. An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis[J]. IEEE Trans Biomedical Circuits and Systems, 2013, 7(2): 129. doi: 10.1109/TBCAS.2013.2256906

[15]

Wang Yuan, Zhang Xu, Liu Ming. An implantable neurostimulator with an integrated high-voltage inductive power recovery frontend[J]. Journal of Semiconductors, 2014, 35(10): 105012. doi: 10.1088/1674-4926/35/10/105012

[1]

Lee H M, Kwon K Y, Li W. A power-efficient switched-capacitor stimulating system for electrical/optical deep-brain stimulation[J]. IEEE J Solid-State Circuits, 2015, 50(1): 360. doi: 10.1109/JSSC.2014.2355814

[2]

Kwon K Y, Lee H M, Ghovanloo M. A wireless slanted optrode array with integrated micro leds for optogenetics[J]. IEEE International Conference on Micro Electro Mechanical Systems, 2014: 813.

[3]

Noorsal E, Sooksood K, Xu H. A neural stimulator frontend with high-voltage compliance and programmable pulse shape for epiretinal implants[J]. IEEE J Solid-State Circuits, 2012, 47(1): 244. doi: 10.1109/JSSC.2011.2164667

[4]

Xu H, Noorsal E, Sooksood K, et al. A multichannel neurostimulator with transcutaneous closed-loop power control and self-adaptive supply. IEEE Eur Solid-State Circuits Conf (ESH. SCIRC), 2012: 309

[5]

Chen Kuanfu, Yang Zhi, Hoang Linh. An integrated 256-channel epiretinal prosthesis[J]. IEEE J Solid-State Circuits, 2010, 45(9): 1946. doi: 10.1109/JSSC.2010.2055371

[6]

Wang G, Wang P, Tang Y. Analysis of dual band power and data telemetry for biomedical implants[J]. IEEE Trans Biomed Circuits Syst, 2012, 6(3): 208. doi: 10.1109/TBCAS.2011.2171958

[7]

Kiani M, Ghovanloo M. A 20 Mb/s pulse harmonic modulation transceiver for wideband near-field data transmission[J]. IEEE Trans Circuits Syst Ⅱ, 2013, 60(7): 382.

[8]

Lee H M, Park H, Ghovanloo M. A power-efficient wireless system with adaptive supply control for deep brain stimulation[J]. IEEE J Solid-State Circuits, 2013, 48(9): 2203. doi: 10.1109/JSSC.2013.2266862

[9]

Kiani M, Ghovanloo M. A 13.56-Mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission[J]. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9(1): 1. doi: 10.1109/TBCAS.2014.2304956

[10]

Han Xu, Zhang Zhang, Tan Ye, et al. A 13.56 MHz low-voltage RF-DC rectifier with controlled Vth cancellation technique. IEEE International Symposium on Radio-Frequency Integration Technology, 2014: TH-IF-4

[11]

Mohanasankar S, Liu W, Mark S. A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device[J]. IEEE J Solid-State Circuits, 2005, 40(3): 763. doi: 10.1109/JSSC.2005.843630

[12]

Constandinou T G, Georgiou J, Toumazou C. A partial-current steering biphasic stimulation driver for vestibular prostheses[J]. IEEE Trans Biomedical Circuits Syst, 2008, 2(2): 106. doi: 10.1109/TBCAS.2008.927238

[13]

Mounaim F, Sawan M. Toward a fully integrated neurostimulator with inductive power recovery front-end[J]. IEEE Trans Biomedical Circuits and Systems, 2012, 6(4): 309. doi: 10.1109/TBCAS.2012.2185796

[14]

Williams I, Constandinou T G. An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis[J]. IEEE Trans Biomedical Circuits and Systems, 2013, 7(2): 129. doi: 10.1109/TBCAS.2013.2256906

[15]

Wang Yuan, Zhang Xu, Liu Ming. An implantable neurostimulator with an integrated high-voltage inductive power recovery frontend[J]. Journal of Semiconductors, 2014, 35(10): 105012. doi: 10.1088/1674-4926/35/10/105012

Search

Advanced Search >>

GET CITATION

Z Zhang, Y Tan, J M Zeng, X Han, X Cheng, G J Xie. A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission[J]. J. Semicond., 2016, 37(9): 095003. doi: 10.1088/1674-4926/37/9/095003.

Export: BibTex EndNote

Article Metrics

Article views: 1568 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 23 February 2016 Manuscript revised: 05 March 2016 Online: Published: 01 September 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误