J. Semicond. > Volume 37 > Issue 10 > Article Number: 105003

A 9 b/12 b 50 MS/s experimental ADC with continuous approximation architecture in 65 nm CMOS

Xiaofeng Guo , Fan Ye , and Junyan Ren

+ Author Affilications + Find other works by these authors

PDF

Abstract: A 9 bits 50 MS/s 0.5 mW continuous approximation mixed successive approximation (CAR&SAR) ADC is presented. A 12 bits 50 MS/s 0.6 mW CAR&CAR ADC is presented. In the field of low power and high performance ADC, CAR is a new architecture different from SAR. It is faster and easier to get high accuracy. Here we will introduce CAR and its circuit implementation, and the 9 bits experimental ADC is designed to verify CARADC's feasibility. Meanwhile, its resolution can be extended to 12 bits with adding an extra CAR, and then the performance is raised to 0.6 mW 50 MS/s 72 dB SNDR at TT corner and the Walden FOM is 3.6 fj/conv-step. The 9 b ADC was fabricated by using TSMC 1P9M 65 nm CMOS technology. The ADC achieves 50 dB SNDR and the realized Walden FOM is 34 fj/conv-step. The simulation and measurement results prove that CAR is available in the low power and high performance ADC and it even outperforms SAR. The ADC core occupies an active area of 0.045 mm2.

Key words: low-power and high-performance ADCCARSARdigital sloop ADChybrid ADC

Abstract: A 9 bits 50 MS/s 0.5 mW continuous approximation mixed successive approximation (CAR&SAR) ADC is presented. A 12 bits 50 MS/s 0.6 mW CAR&CAR ADC is presented. In the field of low power and high performance ADC, CAR is a new architecture different from SAR. It is faster and easier to get high accuracy. Here we will introduce CAR and its circuit implementation, and the 9 bits experimental ADC is designed to verify CARADC's feasibility. Meanwhile, its resolution can be extended to 12 bits with adding an extra CAR, and then the performance is raised to 0.6 mW 50 MS/s 72 dB SNDR at TT corner and the Walden FOM is 3.6 fj/conv-step. The 9 b ADC was fabricated by using TSMC 1P9M 65 nm CMOS technology. The ADC achieves 50 dB SNDR and the realized Walden FOM is 34 fj/conv-step. The simulation and measurement results prove that CAR is available in the low power and high performance ADC and it even outperforms SAR. The ADC core occupies an active area of 0.045 mm2.

Key words: low-power and high-performance ADCCARSARdigital sloop ADChybrid ADC



References:

[1]

Van der Goes F, Ward C, Astgimath S, et al. A 1.5 mW 68 dB-SNDR 80MS/s 2-times interleaved SAR-assisted pipelined ADC in 28 nm CMOS. IEEE International Solid State Circuit Conference (ISSCC), 2014: 200

[2]

Murmann B. ADC performance survey 1997-2015, [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html

[3]

Lim Y, Flynn M P. A 1 mW 71.5 dB SNDR 50 MS/s 13 b fully differential ring amplifier based SAR-assisted pipeline ADC in 65 nm CMOS. IEEE International Solid State Circuit Conference (ISSCC), 2015: 458

[4]

Liu C C, Chang S J, Huang G Y. A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure[J]. IEEE J Solid-State Circuits, 2010, 45(4): 731. doi: 10.1109/JSSC.2010.2042254

[5]

Liu C C. A 0.35 mW 12 b 100 MS/s SAR-assisted digital slope ADC in 28 nm CMOS. IEEE International Solid State Circuit Conference (ISSCC), 2016: 649

[6]

Li Dong, Meng Qiao, Li Fei. A 10 bit 50 MS/s SARADC with partial split capacitor switching scheme in 0.18 μm CMOS[J]. Journal of Semiconductors, 2016, 37(1): 015004. doi: 10.1088/1674-4926/37/1/015004

[7]

Chen Huabin, Ye Fan, Ren Junyan. An analog front end with a 12-bit 3.2-MS/s SAR ADC for a power line communication system[J]. Journal of Semiconductors, 2014, 35(11): 115008. doi: 10.1088/1674-4926/35/11/115008

[8]

Harpe P, Zhou C, Philips K. A 0.8-mW 5-bit 250-MS/s time-interleaved asynchronous digital slope ADC[J]. IEEE J Solid-State Circuits, 2011, 46(11): 2450. doi: 10.1109/JSSC.2011.2164031

[9]

Liu C C. A 10-bit 320-MS/s low-cost SAR ADC for IEEE 802.11ac applications in 20-nm CMOS. IEEE A-SSCC, 2014: 77

[10]

Huang G Y, Chang S J, Liu C C. A 10-bit 30-MS/s SARADC using a switchback switching method[J]. IEEE Trans VLSI Syst, 2013, 21(3): 584. doi: 10.1109/TVLSI.2012.2190117

[11]

Qiao Ning, Zhang Guoquan, Yang Bo. A 10-bit 50-MS/s reference-free low power SAR ADC in 0.18 μm SOI CMOS technology[J]. Journal of Semiconductors, 2012, 33(9): 095005. doi: 10.1088/1674-4926/33/9/095005

[1]

Van der Goes F, Ward C, Astgimath S, et al. A 1.5 mW 68 dB-SNDR 80MS/s 2-times interleaved SAR-assisted pipelined ADC in 28 nm CMOS. IEEE International Solid State Circuit Conference (ISSCC), 2014: 200

[2]

Murmann B. ADC performance survey 1997-2015, [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html

[3]

Lim Y, Flynn M P. A 1 mW 71.5 dB SNDR 50 MS/s 13 b fully differential ring amplifier based SAR-assisted pipeline ADC in 65 nm CMOS. IEEE International Solid State Circuit Conference (ISSCC), 2015: 458

[4]

Liu C C, Chang S J, Huang G Y. A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure[J]. IEEE J Solid-State Circuits, 2010, 45(4): 731. doi: 10.1109/JSSC.2010.2042254

[5]

Liu C C. A 0.35 mW 12 b 100 MS/s SAR-assisted digital slope ADC in 28 nm CMOS. IEEE International Solid State Circuit Conference (ISSCC), 2016: 649

[6]

Li Dong, Meng Qiao, Li Fei. A 10 bit 50 MS/s SARADC with partial split capacitor switching scheme in 0.18 μm CMOS[J]. Journal of Semiconductors, 2016, 37(1): 015004. doi: 10.1088/1674-4926/37/1/015004

[7]

Chen Huabin, Ye Fan, Ren Junyan. An analog front end with a 12-bit 3.2-MS/s SAR ADC for a power line communication system[J]. Journal of Semiconductors, 2014, 35(11): 115008. doi: 10.1088/1674-4926/35/11/115008

[8]

Harpe P, Zhou C, Philips K. A 0.8-mW 5-bit 250-MS/s time-interleaved asynchronous digital slope ADC[J]. IEEE J Solid-State Circuits, 2011, 46(11): 2450. doi: 10.1109/JSSC.2011.2164031

[9]

Liu C C. A 10-bit 320-MS/s low-cost SAR ADC for IEEE 802.11ac applications in 20-nm CMOS. IEEE A-SSCC, 2014: 77

[10]

Huang G Y, Chang S J, Liu C C. A 10-bit 30-MS/s SARADC using a switchback switching method[J]. IEEE Trans VLSI Syst, 2013, 21(3): 584. doi: 10.1109/TVLSI.2012.2190117

[11]

Qiao Ning, Zhang Guoquan, Yang Bo. A 10-bit 50-MS/s reference-free low power SAR ADC in 0.18 μm SOI CMOS technology[J]. Journal of Semiconductors, 2012, 33(9): 095005. doi: 10.1088/1674-4926/33/9/095005

[1]

Ya Wang, Chunying Xue, Fule Li, Chun Zhang, Zhihua Wang. A low power 11-bit 100 MS/s SAR ADC IP. J. Semicond., 2015, 36(2): 025003. doi: 10.1088/1674-4926/36/2/025003

[2]

Chenghao Bian, Jun Yan, Yin Shi, Ling Sun. A 130 nm CMOS low-power SAR ADC for wide-band communication systems. J. Semicond., 2014, 35(2): 025003. doi: 10.1088/1674-4926/35/2/025003

[3]

Wei Liu, Tingcun Wei, Bo Li, Panjie Guo, Yongcai Hu. A 12-bit 1 MS/s SAR-ADC for multi-channel CdZnTe detectors. J. Semicond., 2015, 36(4): 045007. doi: 10.1088/1674-4926/36/4/045007

[4]

Yi Shen, Shubin Liu, Zhangming Zhu. A 10 b 50 MS/s two-stage pipelined SAR ADC in 180 nm CMOS. J. Semicond., 2016, 37(6): 065001. doi: 10.1088/1674-4926/37/6/065001

[5]

Tong Xingyuan, Yang Yintang, Zhu Zhangming, Sheng Wenfang. A 10-bit 200-kS/s SAR ADC IP core for a touch screen SoC. J. Semicond., 2010, 31(10): 105009. doi: 10.1088/1674-4926/31/10/105009

[6]

Fubin Xin, Tao Yin, Qisong Wu, Yuanlong Yang, Fei Liu, Haigang Yang. A low power 12-bit 1 Msps successive approximation register ADC with an improved switching procedure. J. Semicond., 2015, 36(8): 085007. doi: 10.1088/1674-4926/36/8/085007

[7]

Ke Liu, Zhankun Du, Li Shao, Xiao Ma. A trimming technique for capacitive SAR ADC as sensor interface. J. Semicond., 2015, 36(12): 125004. doi: 10.1088/1674-4926/36/12/125004

[8]

Luo Hao, Han Yan, Ray C. C. Cheung, Han Xiaoxia, Ma Shaoyu, Ying Peng, Zhu Dazhong. A high-performance, low-power ΣΔ ADC for digital audio applications. J. Semicond., 2010, 31(5): 055009. doi: 10.1088/1674-4926/31/5/055009

[9]

Tong Xingyuan, Chen Jianming, Zhu Zhangming, Yang Yintang. A high performance 90 nm CMOS SAR ADC with hybrid architecture. J. Semicond., 2010, 31(1): 015002. doi: 10.1088/1674-4926/31/1/015002

[10]

Zhu Liang, Wenren Qingqing, Yan Jiang, Gu Yili, Yang Steve. Various Effective Resist Diffusion Lengths Methodology for OPC Model Calibration. J. Semicond., 2008, 29(12): 2346.

[11]

Wei Liu, Tingcun Wei, Bo Li, Lifeng Yang, Yongcai Hu. A reference voltage in capacitor-resister hybrid SAR ADC for front-end readout system of CZT detector. J. Semicond., 2016, 37(1): 015005. doi: 10.1088/1674-4926/37/1/015005

[12]

Beichen Zhang, Bingbing Yao, Liyuan Liu, Jian Liu, Nanjian Wu. High power-efficient asynchronous SAR ADC for IoT devices. J. Semicond., 2017, 38(10): 105001. doi: 10.1088/1674-4926/38/10/105001

[13]

Zhao Hongliang, Zhao Yiqiang, Zhang Zhisheng. A cryogenic SAR ADC for infrared readout circuits. J. Semicond., 2011, 32(11): 115015. doi: 10.1088/1674-4926/32/11/115015

[14]

Yang Siyu, Zhang Hui, Fu Wenhui, Yi Ting, Hong Zhiliang. A low power 12-bit 200-kS/s SAR ADC with a differential time domain comparator. J. Semicond., 2011, 32(3): 035002. doi: 10.1088/1674-4926/32/3/035002

[15]

Hui Hong, Shiliang Li, Tao Zhou. Design of a low power 10 bit 300 ksps multi-channel SAR ADC for wireless sensor network applications. J. Semicond., 2015, 36(4): 045009. doi: 10.1088/1674-4926/36/4/045009

[16]

Ma Shaoyu, Han Yan, Huang Xiaowei, Yang Liwu. A High-Performance,Low-Power ΣΔ Modulator for Digital Audio Applications. J. Semicond., 2008, 29(10): 2050.

[17]

Jihai Duan, Zhiyong Zhu, Jinli Deng, Weilin Xu. An 8 bit 1 MS/s SAR ADC with 7.72-ENOB. J. Semicond., 2017, 38(8): 085005. doi: 10.1088/1674-4926/38/8/085005

[18]

Dengquan Li, Liang Zhang, Zhangming Zhu, Yintang Yang. Modeling of channel mismatch in time-interleaved SAR ADC. J. Semicond., 2015, 36(9): 095007. doi: 10.1088/1674-4926/36/9/095007

[19]

Qiao Ning, Zhang Guoquan, Yang Bo, Liu Zhongli, Yu Fang. A 10-bit 50-MS/s reference-free low power SAR ADC in 0.18-μm SOI CMOS technology. J. Semicond., 2012, 33(9): 095005. doi: 10.1088/1674-4926/33/9/095005

[20]

Quanliang Li, Liyuan Liu, Ye Han, Zhongxiang Cao, Nanjian Wu. A 12-bit compact column-parallel SAR ADC with dynamic power control technique for high-speed CMOS image sensors. J. Semicond., 2014, 35(10): 105008. doi: 10.1088/1674-4926/35/10/105008

Search

Advanced Search >>

GET CITATION

X F Guo, F Ye, J Y Ren. A 9 b/12 b 50 MS/s experimental ADC with continuous approximation architecture in 65 nm CMOS[J]. J. Semicond., 2016, 37(10): 105003. doi: 10.1088/1674-4926/37/10/105003.

Export: BibTex EndNote

Article Metrics

Article views: 638 Times PDF downloads: 8 Times Cited by: 0 Times

History

Manuscript received: 17 March 2016 Manuscript revised: 05 April 2016 Online: Published: 01 October 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误