J. Semicond. > Volume 37 > Issue 10 > Article Number: 103004

Carbon agent chemical vapor transport growth of Ga2O3 crystal

Jie Su 1, 2, , Tong Liu 1, , Jingming Liu 1, , Jun Yang 1, , Guiying Shen 1, 2, , Yongbiao Bai 1, 2, , Zhiyuan Dong 1, and Youwen Zhao 1, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Beta-type gallium oxide (β-Ga2O3) is a new attractive material for optoelectronic devices. Different methods had been tried to grow high quality β-Ga2O3 crystals. In this work, crystal growth of Ga2O3 has been carried out by chemical vapor transport (CVT) method in a closed quartz tube using C as transport agent and sapphire wafer as seed. The CVT mass flux has been analyzed by theoretical calculations based on equilibrium thermodynamics and 1D diffusional mass transport. The crystal growth experimental results are in agreement with the theoretical predictions. Influence factors of Ga2O3 crystal growth, such as temperature distribution, amount of C as transport agent used, have also been discussed. Structural (XRD) and optical (Raman spectroscopy, photoluminescence spectrum) properties of the CVT-Ga2O3 crystal are presented.

Key words: chemical vapor transportβ-Ga2O3 crystalstheoretical calculationsXRDRaman spectroscopyphotoluminescence spectrum

Abstract: Beta-type gallium oxide (β-Ga2O3) is a new attractive material for optoelectronic devices. Different methods had been tried to grow high quality β-Ga2O3 crystals. In this work, crystal growth of Ga2O3 has been carried out by chemical vapor transport (CVT) method in a closed quartz tube using C as transport agent and sapphire wafer as seed. The CVT mass flux has been analyzed by theoretical calculations based on equilibrium thermodynamics and 1D diffusional mass transport. The crystal growth experimental results are in agreement with the theoretical predictions. Influence factors of Ga2O3 crystal growth, such as temperature distribution, amount of C as transport agent used, have also been discussed. Structural (XRD) and optical (Raman spectroscopy, photoluminescence spectrum) properties of the CVT-Ga2O3 crystal are presented.

Key words: chemical vapor transportβ-Ga2O3 crystalstheoretical calculationsXRDRaman spectroscopyphotoluminescence spectrum



References:

[1]

Galazka Z, Uecker R, Irmscher K. Czochralski growth and characterization of β-Ga2O3 single crystals[J]. Cryst Res Technol, 2010, 45: 1229. doi: 10.1002/crat.v45.12

[2]

Zhong M Z, Wei Z M, Meng X Q. High-performance single crystalline UV photodetectors of β-Ga2O3[J]. J Alloys Compd, 2015, 619: 572. doi: 10.1016/j.jallcom.2014.09.070

[3]

Oshima T, Okuno T, Fujita S. Ga2O3 Thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors[J]. Jpn J Appl Phys, 2007, 46: 7217. doi: 10.1143/JJAP.46.7217

[4]

Su J K, Sang Y P, Kyeong H K. Ga2O3:ITO transparent conducting electrodes for near-ultraviolet light-emitting diodes[J]. IEEE Electron Device Lett, 2014, 35: 232. doi: 10.1109/LED.2013.2292080

[5]

Zhang L C, Zhao F Z, Wang F F. Improvement in electroluminescence performance of n-ZnO/Ga2O3/p-GaN heterojunction light-emitting diodes[J]. Chin Phys B, 2013, 22: 128502. doi: 10.1088/1674-1056/22/12/128502

[6]

Higashiwaki M, Sasaki K, Kuramata A. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates[J]. Appl Phys Lett, 2012, 100: 013504. doi: 10.1063/1.3674287

[7]

Samedov K, Aksu Y, Driess M. From molecular gallium and indium siloxide precursors to amorphous semiconducting transparent oxide layers for applications in thin-film field-effect transistors[J]. Chem Plus Chem, 2012, 77: 663.

[8]

Jin C, Park S, Kim H. Ultrasensitive multiple networked Ga2O3-core/ZnO-shell nanorod gas sensors[J]. Sensor Actuat B, 2012, 161: 223. doi: 10.1016/j.snb.2011.10.023

[9]

Geller S. Crystal structure of β-Ga2O3[J]. J Chem Phys, 1960, 33: 676. doi: 10.1063/1.1731237

[10]

Razeghi M, Allen L P, Flint J P. Manufacturing of 100 mm diameter GaSb substrates for advanced space based applications[J]. Proc of SPIE, 2012, 8268: 826817. doi: 10.1117/12.904777

[11]

Roy R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the system Ga2O3-H2O[J]. J Am Chem Soc, 1952, 74: 719. doi: 10.1021/ja01123a039

[12]

Tomm Y, Ko J M, Yoshikawa A. Floating zone growth of β-Ga2O3: a new window material for optoelectronic device applications[J]. Sol Energ Mat Sol C, 2001, 66: 369. doi: 10.1016/S0927-0248(00)00196-3

[13]

Tippins H. Optical absorption and photoconductivity in the band edge of β-Ga2O3[J]. Phys Rev, 1965, 140: A316. doi: 10.1103/PhysRev.140.A316

[14]

Hajnal Z, Miro J, Kiss G. Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3[J]. J Appl Phys, 1999, 86: 3792. doi: 10.1063/1.371289

[15]

Yan Jinliang, Qu Chong. Electronic structure and optical properties of F-doped β-Ga2O3 from first principles calculations[J]. Journal of Semiconductors, 2016, 37(4): 042002. doi: 10.1088/1674-4926/37/4/042002

[16]

Guo Y R, Yan H Y, Song Q G. Electronic structure and magnetic interactions in Zn-doped β-Ga2O3 from first-principles calculations[J]. Comp Mater Sci, 2014, 87: 198. doi: 10.1016/j.commatsci.2014.02.020

[17]

Zhao Yinnü, Yan Jinliang. First-principles study of n-type tin/fluorine co-doped beta-gallium oxides[J]. Journal of Semiconductors, 2015, 36(8): 082004. doi: 10.1088/1674-4926/36/8/082004

[18]

Garton G, Smith S H, Wanklyn B M. Crystal growth from the flux systems PbO-V2O5 and Bi2O3-V2O5[J]. J Cryst Growth, 1972, 13/14: 588. doi: 10.1016/0022-0248(72)90523-4

[19]

Chani V I, Inoue K, Shimamura K. Segregation coefficients in β-Ga2O3 grown from a B2O3 based flux[J]. J Cryst Growth, 1993, 132: 335. doi: 10.1016/0022-0248(93)90278-5

[20]

Chase A B. Growth of β-Ga2O3 by the verneuil technique[J]. J Am Ceram Soc, 1964, 47: 470. doi: 10.1111/jace.1964.47.issue-9

[21]

Lorenz M R, Woods J F, Gambino R J. Some electrical properties of the semiconductor β-Ga2O3[J]. J Phys Chem Solids, 1967, 28: 403. doi: 10.1016/0022-3697(67)90305-8

[22]

Matsumoto T, Aoki M, Kinoshita A. Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3[J]. Jpn J Appl Phys, 1974, 13: 1578. doi: 10.1143/JJAP.13.1578

[23]

Pajaczkowska A, Juskowiak H. On the chemical transport of gallium oxide in the Ga2O3/N-H-CI system[J]. J Cryst Growth, 1986, 79: 421. doi: 10.1016/0022-0248(86)90471-9

[24]

Zhang J G, Li B, Xia C T. Single crystal β-Ga2O3: Cr grown by floating zone technique and its optical properties[J]. Science in China Series E, 2007, 50: 51.

[25]

Zhang J, Li B, Xia C. Growth and spectral characterization of β-Ga2O3 single crystals[J]. J Phys Chem Solids, 2006, 67: 2448. doi: 10.1016/j.jpcs.2006.06.025

[26]

Galazka Z, Irmscher K, Uecker R. On the bulk β-Ga2O3 single crystals grown by the Czochralski method[J]. J Cryst Growth, 2014, 404: 184. doi: 10.1016/j.jcrysgro.2014.07.021

[27]

Oishi T, Harada K, Koga Y. Conduction mechanism in highly doped β-Ga2O3 (201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes[J]. Jpn J Appl Phys, 2016, 55: 030305. doi: 10.7567/JJAP.55.030305

[28]

Oishi T, Koga Y, Harada K. High-mobility β-Ga2O3 (201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact[J]. Appl Phys Express, 2015, 8: 031101. doi: 10.7567/APEX.8.031101

[29]

Toor H L. Diffusion in three-component gas mixtures[J]. AIChE J, 1957, 3: 198. doi: 10.1002/(ISSN)1547-5905

[30]

Wiedemeier H, Chandra D, Klaessig F C. Diffusive and convective vapor transport in the GeSe-GeI4 system[J]. J Cryst Growth, 1980, 51: 345.

[31]

Klosse K. A new productivity function and stability criterion in chemical vapor transport processes[J]. J Solid State Chem, 1975, 15: 105. doi: 10.1016/0022-4596(75)90233-9

[32]

Paorici C, Pelosi C, Attolini G. Closed-tube chemical-transport mechanisms in the Cd:Te:H:Cl:N system[J]. J Cryst Growth, 1975, 28: 358. doi: 10.1016/0022-0248(75)90072-X

[33]

Paorici C, Pelosi C. Kinetics of vapour growth in the system CdS:I2[J]. J Cryst Growth, 1976, 35: 65. doi: 10.1016/0022-0248(76)90245-1

[34]

Scehla R A. Estimated viscosities and thermal conductivities of gases at high temperatures. Cleveland: Lewis Research Center, 1962, R-132

[35]

Dhanaraj G, Byrappa K, Prasad V. Handbook of crystal growth[J]. Springer, 2010.

[36]

Dohy D, Lucazeau G. Raman spectra and valence force field of single-crystalline β-Ga2O3[J]. J Solid State Chem, 1982, 45: 180. doi: 10.1016/0022-4596(82)90274-2

[37]

Harwig T, Kellendonk F. Some observations on the photoluminescence of doped β-galliumsesquioxide[J]. J Solid State Chem, 1978, 24: 255. doi: 10.1016/0022-4596(78)90017-8

[38]

Vasil'tsiv V I, Zakharko M Y, Prim I Y. On the nature of blue and green luminescence bands of β-Ga2O3[J]. Ukr Fiz Zh, 1988, 33: 1320.

[1]

Galazka Z, Uecker R, Irmscher K. Czochralski growth and characterization of β-Ga2O3 single crystals[J]. Cryst Res Technol, 2010, 45: 1229. doi: 10.1002/crat.v45.12

[2]

Zhong M Z, Wei Z M, Meng X Q. High-performance single crystalline UV photodetectors of β-Ga2O3[J]. J Alloys Compd, 2015, 619: 572. doi: 10.1016/j.jallcom.2014.09.070

[3]

Oshima T, Okuno T, Fujita S. Ga2O3 Thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors[J]. Jpn J Appl Phys, 2007, 46: 7217. doi: 10.1143/JJAP.46.7217

[4]

Su J K, Sang Y P, Kyeong H K. Ga2O3:ITO transparent conducting electrodes for near-ultraviolet light-emitting diodes[J]. IEEE Electron Device Lett, 2014, 35: 232. doi: 10.1109/LED.2013.2292080

[5]

Zhang L C, Zhao F Z, Wang F F. Improvement in electroluminescence performance of n-ZnO/Ga2O3/p-GaN heterojunction light-emitting diodes[J]. Chin Phys B, 2013, 22: 128502. doi: 10.1088/1674-1056/22/12/128502

[6]

Higashiwaki M, Sasaki K, Kuramata A. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates[J]. Appl Phys Lett, 2012, 100: 013504. doi: 10.1063/1.3674287

[7]

Samedov K, Aksu Y, Driess M. From molecular gallium and indium siloxide precursors to amorphous semiconducting transparent oxide layers for applications in thin-film field-effect transistors[J]. Chem Plus Chem, 2012, 77: 663.

[8]

Jin C, Park S, Kim H. Ultrasensitive multiple networked Ga2O3-core/ZnO-shell nanorod gas sensors[J]. Sensor Actuat B, 2012, 161: 223. doi: 10.1016/j.snb.2011.10.023

[9]

Geller S. Crystal structure of β-Ga2O3[J]. J Chem Phys, 1960, 33: 676. doi: 10.1063/1.1731237

[10]

Razeghi M, Allen L P, Flint J P. Manufacturing of 100 mm diameter GaSb substrates for advanced space based applications[J]. Proc of SPIE, 2012, 8268: 826817. doi: 10.1117/12.904777

[11]

Roy R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the system Ga2O3-H2O[J]. J Am Chem Soc, 1952, 74: 719. doi: 10.1021/ja01123a039

[12]

Tomm Y, Ko J M, Yoshikawa A. Floating zone growth of β-Ga2O3: a new window material for optoelectronic device applications[J]. Sol Energ Mat Sol C, 2001, 66: 369. doi: 10.1016/S0927-0248(00)00196-3

[13]

Tippins H. Optical absorption and photoconductivity in the band edge of β-Ga2O3[J]. Phys Rev, 1965, 140: A316. doi: 10.1103/PhysRev.140.A316

[14]

Hajnal Z, Miro J, Kiss G. Role of oxygen vacancy defect states in the n-type conduction of β-Ga2O3[J]. J Appl Phys, 1999, 86: 3792. doi: 10.1063/1.371289

[15]

Yan Jinliang, Qu Chong. Electronic structure and optical properties of F-doped β-Ga2O3 from first principles calculations[J]. Journal of Semiconductors, 2016, 37(4): 042002. doi: 10.1088/1674-4926/37/4/042002

[16]

Guo Y R, Yan H Y, Song Q G. Electronic structure and magnetic interactions in Zn-doped β-Ga2O3 from first-principles calculations[J]. Comp Mater Sci, 2014, 87: 198. doi: 10.1016/j.commatsci.2014.02.020

[17]

Zhao Yinnü, Yan Jinliang. First-principles study of n-type tin/fluorine co-doped beta-gallium oxides[J]. Journal of Semiconductors, 2015, 36(8): 082004. doi: 10.1088/1674-4926/36/8/082004

[18]

Garton G, Smith S H, Wanklyn B M. Crystal growth from the flux systems PbO-V2O5 and Bi2O3-V2O5[J]. J Cryst Growth, 1972, 13/14: 588. doi: 10.1016/0022-0248(72)90523-4

[19]

Chani V I, Inoue K, Shimamura K. Segregation coefficients in β-Ga2O3 grown from a B2O3 based flux[J]. J Cryst Growth, 1993, 132: 335. doi: 10.1016/0022-0248(93)90278-5

[20]

Chase A B. Growth of β-Ga2O3 by the verneuil technique[J]. J Am Ceram Soc, 1964, 47: 470. doi: 10.1111/jace.1964.47.issue-9

[21]

Lorenz M R, Woods J F, Gambino R J. Some electrical properties of the semiconductor β-Ga2O3[J]. J Phys Chem Solids, 1967, 28: 403. doi: 10.1016/0022-3697(67)90305-8

[22]

Matsumoto T, Aoki M, Kinoshita A. Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3[J]. Jpn J Appl Phys, 1974, 13: 1578. doi: 10.1143/JJAP.13.1578

[23]

Pajaczkowska A, Juskowiak H. On the chemical transport of gallium oxide in the Ga2O3/N-H-CI system[J]. J Cryst Growth, 1986, 79: 421. doi: 10.1016/0022-0248(86)90471-9

[24]

Zhang J G, Li B, Xia C T. Single crystal β-Ga2O3: Cr grown by floating zone technique and its optical properties[J]. Science in China Series E, 2007, 50: 51.

[25]

Zhang J, Li B, Xia C. Growth and spectral characterization of β-Ga2O3 single crystals[J]. J Phys Chem Solids, 2006, 67: 2448. doi: 10.1016/j.jpcs.2006.06.025

[26]

Galazka Z, Irmscher K, Uecker R. On the bulk β-Ga2O3 single crystals grown by the Czochralski method[J]. J Cryst Growth, 2014, 404: 184. doi: 10.1016/j.jcrysgro.2014.07.021

[27]

Oishi T, Harada K, Koga Y. Conduction mechanism in highly doped β-Ga2O3 (201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes[J]. Jpn J Appl Phys, 2016, 55: 030305. doi: 10.7567/JJAP.55.030305

[28]

Oishi T, Koga Y, Harada K. High-mobility β-Ga2O3 (201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact[J]. Appl Phys Express, 2015, 8: 031101. doi: 10.7567/APEX.8.031101

[29]

Toor H L. Diffusion in three-component gas mixtures[J]. AIChE J, 1957, 3: 198. doi: 10.1002/(ISSN)1547-5905

[30]

Wiedemeier H, Chandra D, Klaessig F C. Diffusive and convective vapor transport in the GeSe-GeI4 system[J]. J Cryst Growth, 1980, 51: 345.

[31]

Klosse K. A new productivity function and stability criterion in chemical vapor transport processes[J]. J Solid State Chem, 1975, 15: 105. doi: 10.1016/0022-4596(75)90233-9

[32]

Paorici C, Pelosi C, Attolini G. Closed-tube chemical-transport mechanisms in the Cd:Te:H:Cl:N system[J]. J Cryst Growth, 1975, 28: 358. doi: 10.1016/0022-0248(75)90072-X

[33]

Paorici C, Pelosi C. Kinetics of vapour growth in the system CdS:I2[J]. J Cryst Growth, 1976, 35: 65. doi: 10.1016/0022-0248(76)90245-1

[34]

Scehla R A. Estimated viscosities and thermal conductivities of gases at high temperatures. Cleveland: Lewis Research Center, 1962, R-132

[35]

Dhanaraj G, Byrappa K, Prasad V. Handbook of crystal growth[J]. Springer, 2010.

[36]

Dohy D, Lucazeau G. Raman spectra and valence force field of single-crystalline β-Ga2O3[J]. J Solid State Chem, 1982, 45: 180. doi: 10.1016/0022-4596(82)90274-2

[37]

Harwig T, Kellendonk F. Some observations on the photoluminescence of doped β-galliumsesquioxide[J]. J Solid State Chem, 1978, 24: 255. doi: 10.1016/0022-4596(78)90017-8

[38]

Vasil'tsiv V I, Zakharko M Y, Prim I Y. On the nature of blue and green luminescence bands of β-Ga2O3[J]. Ukr Fiz Zh, 1988, 33: 1320.

[1]

Zhang Panfeng, Wei Hongyuan, Fan Haibo, Cong Guangwei, Yang Shaoyan, Zhu Qinsheng, Liu Xianglin. Effect of Different Facets of on the Growth of vapor deposition. J. Semicond., 2007, 28(S1): 289.

[2]

Shen Wenjuan, Wang Jun, Duan Yao, Wang Qiyuan, Zeng Yiping. Effects of Thickness on Properties of ZnO Films Grown on Si by MOCVD. J. Semicond., 2005, 26(11): 2069.

[3]

Zhao Youwen, Dong Zhiyuan, Wei Xuecheng, Duan Manlong, Li Jinmin. Growth of ZnO Single Crystal by Chemical Vapor Transport Method. J. Semicond., 2006, 27(2): 336.

[4]

Zhang Xin'an, Zhang Jingwen, Wang Dong, Bi Zhen. Growth Mode Control of Large Size ZnO Single Crystal Growth Through Chemical Vapor Transport. J. Semicond., 2007, 28(S1): 300.

[5]

Thierno Sall, A. Nafidi, Bernabé Marí Soucase, Miguel Mollar, Bouchaib Hartitti, Mounir Fahoume. Synthesis of In2S3 thin films by spray pyrolysis from precursors with different[S]/[In] ratios. J. Semicond., 2014, 35(6): 063002. doi: 10.1088/1674-4926/35/6/063002

[6]

Kiran Diwate, Amit Pawbake, Sachin Rondiya, Rupali Kulkarni, Ravi Waykar, Ashok Jadhavar, Avinash Rokade, Adinath Funde, Kakasaheb Mohite, Manish Shinde, Habib Pathan, Rupesh Devan, Sandesh Jadkar. Substrate temperature dependent studies on properties of chemical spray pyrolysis deposited CdS thin films for solar cell applications. J. Semicond., 2017, 38(2): 023001. doi: 10.1088/1674-4926/38/2/023001

[7]

Wang Xiaoyan, Wang Xiaoliang, Hu Guoxin, Wang Baozhu, Li Jianping, Xiao Hongling, Wang Junxi, Liu Hongxin, Zeng Yiping, Li Jinmin. Growth of High AI Content AIGaN Epilayer by MOCVD. J. Semicond., 2007, 28(S1): 193.

[8]

Wang Baozhu, Wang Xiaoliang, Wang Xiaoyan, Wang Xinhua, Guo Lunchun, Xiao Hongling, Wang Cuimei, Ran Junxue, Wang Junxi, Liu Hongxin, Li Jinmin. Effects of Growth Temperature Oil the InAIGaN Epilayer by RF-MBE. J. Semicond., 2007, 28(S1): 197.

[9]

Zhang Xuhui, Tao Chunlan, Zhang Fujia, Liu Yiyang, Zhang Haoli. Dissolving Pentacene and Characterizing Pantecene Thin Films Fabricated from the Solution. J. Semicond., 2006, 27(10): 1771.

[10]

Xie Zili, Zhang Rong, Gao Chao, Liu Bin, Li Liang, Xiu Xiangqian, Zhu Shunming, Gu Shulin, Han Ping, Jiang Ruolian, Shi Yi, Zheng Youdou. Fabrication and Characteristics of In2O3 Nanowires. J. Semicond., 2006, 27(3): 536.

[11]

L. Bouhdjer, S. Addala, A. Chala, O. Halimi, B. Boudine, M. Sebais. Elaboration and characterization of a KCl single crystal doped with nanocrystalsof a Sb2O3 semiconductor. J. Semicond., 2013, 34(4): 043001. doi: 10.1088/1674-4926/34/4/043001

[12]

Xin Cong, Miaoling Lin, Ping-Heng Tan. Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure. J. Semicond., 2019, 40(9): 091001. doi: 10.1088/1674-4926/40/9/091001

[13]

Zheng Wenli, Li Tinghui. Compositional dependence of Raman frequencies in SixGe1-x alloys. J. Semicond., 2012, 33(11): 112001. doi: 10.1088/1674-4926/33/11/112001

[14]

Jiji Koshy, M. Soosen Samuel, Anoop Chandran, K. C. George. Correlated barrier hopping of CuO nanoparticles. J. Semicond., 2015, 36(12): 122003. doi: 10.1088/1674-4926/36/12/122003

[15]

Yang Dingyu, Zhu Xinghua, Wei Zhaorong, Yang Weiqing, Li Lezhong, Yang Jun, Gao Xiuying. Structural and optical properties of polycrystalline CdS thin films depositedby electron beam evaporation. J. Semicond., 2011, 32(2): 023001. doi: 10.1088/1674-4926/32/2/023001

[16]

Wang Jianhui, Wang Xinhua, Pang Lei, Chen Xiaojuan, Jin Zhi, Liu Xinyu. Effect of varying layouts on the gate temperature for multi-finger AlGaN/GaN HEMTs. J. Semicond., 2012, 33(9): 094004. doi: 10.1088/1674-4926/33/9/094004

[17]

Qing-Hai Tan, Xin Zhang, Xiang-Dong Luo, Jun Zhang, Ping-Heng Tan. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings. J. Semicond., 2017, 38(3): 031006. doi: 10.1088/1674-4926/38/3/031006

[18]

Liyuan Yang, Shan Ai, Yonghe Chen, Mengyi Cao, Kai Zhang, Xiaohua Ma, Yue Hao. A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors. J. Semicond., 2013, 34(7): 074005. doi: 10.1088/1674-4926/34/7/074005

[19]

He Guorong, Zheng Wanhua, Qu Hongwei, Yang Guohua, Wang Qing, Wu Xuming, Cao Yulian, Chen Lianghui. Analysis of the Fabrication of a Surface Emitting Laser by the Bonding Method. J. Semicond., 2007, 28(3): 444.

[20]

Wang Baozhu, Wang Xiaoliang, Wang Xiaoyan, Wang Xinhua, Guo Lunchun, Xiao Hongling, Wang Junxi, Liu Hongxin, Zeng Yiping, Li Jinmin. RF-MBE Growth of InAlGaN Epilayer on Sapphire Substrate. J. Semicond., 2006, 27(8): 1382.

Search

Advanced Search >>

GET CITATION

J Su, T Liu, J M Liu, J Yang, G Y Shen, Y B Bai, Z Y Dong, Y W Zhao. Carbon agent chemical vapor transport growth of Ga2O3 crystal[J]. J. Semicond., 2016, 37(10): 103004. doi: 10.1088/1674-4926/37/10/103004.

Export: BibTex EndNote

Article Metrics

Article views: 823 Times PDF downloads: 12 Times Cited by: 0 Times

History

Manuscript received: 07 April 2016 Manuscript revised: 10 May 2016 Online: Published: 01 October 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误