J. Semicond. > Volume 41 > Issue 10 > Article Number: 101301

Silicon photonic transceivers for application in data centers

Haomiao Wang 1, 2, , Hongyu Chai 1, 2, , Zunren Lv 1, 2, , Zhongkai Zhang 1, 2, , Lei Meng 1, 2, , Xiaoguang Yang 1, 2, and Tao Yang 1, 2, ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Global data traffic is growing rapidly, and the demand for optoelectronic transceivers applied in data centers (DCs) is also increasing correspondingly. In this review, we first briefly introduce the development of optoelectronics transceivers in DCs, as well as the advantages of silicon photonic chips fabricated by complementary metal oxide semiconductor process. We also summarize the research on the main components in silicon photonic transceivers. In particular, quantum dot lasers have shown great potential as light sources for silicon photonic integration—whether to adopt bonding method or monolithic integration—thanks to their unique advantages over the conventional quantum-well counterparts. Some of the solutions for high-speed optical interconnection in DCs are then discussed. Among them, wavelength division multiplexing and four-level pulse-amplitude modulation have been widely studied and applied. At present, the application of coherent optical communication technology has moved from the backbone network, to the metro network, and then to DCs.

Key words: data centersilicon-based optoelectronic transceiverhigh-speed optical interconnectionquantum dot lasers

Abstract: Global data traffic is growing rapidly, and the demand for optoelectronic transceivers applied in data centers (DCs) is also increasing correspondingly. In this review, we first briefly introduce the development of optoelectronics transceivers in DCs, as well as the advantages of silicon photonic chips fabricated by complementary metal oxide semiconductor process. We also summarize the research on the main components in silicon photonic transceivers. In particular, quantum dot lasers have shown great potential as light sources for silicon photonic integration—whether to adopt bonding method or monolithic integration—thanks to their unique advantages over the conventional quantum-well counterparts. Some of the solutions for high-speed optical interconnection in DCs are then discussed. Among them, wavelength division multiplexing and four-level pulse-amplitude modulation have been widely studied and applied. At present, the application of coherent optical communication technology has moved from the backbone network, to the metro network, and then to DCs.

Key words: data centersilicon-based optoelectronic transceiverhigh-speed optical interconnectionquantum dot lasers



References:

[1]

Reinsel D, Gantz J, Rydning J. The digitization of the world-from egde to core. An IDC Whitepaper, 2018

[2]

Jones N. The information factories. Nature, 2018, 561(7722), 163

[3]

Miller D. Device requirements for optical interconnects to silicon chips. Proc IEEE, 2009, 97(7), 1166

[4]

Ohashi K, Nishi K, Shimizu T, et al. On-chip optical interconnect. Proc IEEE, 2009, 97(7), 1186

[5]

Lu Z G, Liu J R, Song C Y, et al. High performance InAs/InP quantum dot 34.462-GHz C-band coherent comb laser module. Opt Express, 2018, 26(2), 2160

[6]

Lv Z R, Zhang Z K, Yang X G, et al. Improved performance of 1.3-μm InAs/GaAs quantum dot lasers by direct Si doping. Appl Phys Lett, 2018, 113(1), 011105

[7]

Chen L, Xu Q, Wood M G, et al. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 2014, 1(2), 112

[8]

Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562(7725), 101

[9]

Liao S, Feng N N, Feng D. 36 GHz submicron silicon waveguide germanium photodetector. Opt Express, 2011, 19(11), 10967

[10]

Chen L, Doerr C R, Chen Y K, et al. Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides. IEEE Photonics Technol Lett, 2010, 22(23), 1744

[11]

Pinguet T, Denton S, Gloeckner S, et al. High-volume manufacturing platform for silicon photonics. Proc IEEE, 2018, 106(12), 2281

[12]

Deng Q Z, Liu L, Zhang R, et al. Athermal and flat-topped silicon Mach-Zehnder filters. Opt Express, 2016, 24(26), 29577

[13]

Hiraki T, Nishi H, Tsuchizawa T, et al. Si–Ge–silica monolithic integration platform and its application to a 22-Gb/s × 16-ch WDM receiver. IEEE Photonics J, 2013, 5(4), 4500407

[14]

Mekis A, Gloeckner S, Masini G, et al. A grating-coupler-enabled CMOS photonics platform. IEEE J Sel Top Quantum Electron, 2011, 17(3), 597

[15]

Winn J N, Rusin D, Kochanek C S. A high-speed silicon optical modulator based on a metal-oxide-semiconducor capacitor. Nature, 2004, 427(6975), 613

[16]

DeRose C T, Trotter D C, Zortman W A, et al. Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. Opt Express, 2011, 19(25), 24897

[17]

Ennen H, Schneider J, Pomrenke G, et al. 1.54-μm luminescence of erbium-implanted III–V semiconductors and silicon. Appl Phys Lett, 1983, 43(10), 943

[18]

Wirths S, Geiger R, von den Driesch N, et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat Photonics, 2015, 9(2), 88

[19]

d'Avezac M, Luo J W, Chanier T, et al. Genetic-algorithm discovery of a direct-gap and optically allowed superstructure from indirect-gap Si and Ge semiconductors. Phys Rev Lett, 2012, 108(2), 027401

[20]

Camacho-Aguilera R E, Cai Y, Patel N, et al. An electrically pumped germanium laser. Opt Express, 2012, 20(10), 11316

[21]

Zhou Z, Yin B, Michel J. On-chip light sources for silicon photonics. Light: Sci Appl, 2015, 4(11), e358

[22]

Kobayashi N, Sato K, Namiwaka M, et al. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. J Lightwave Technol, 2015, 33(6), 1241

[23]

Wang T, Liu H. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 2011, 19(12), 11381

[24]

Chen S, Li W, Wu J, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 2016, 10(5), 307

[25]

Li Q, Ng K W, Lau K M. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett, 2015, 106(7), 072105

[26]

Schulze C S, Huang X, Prohl C, et al. Atomic structure and stoichiometry of In(Ga)As/GaAs quantum dots grown on an exact-oriented GaP/Si(001) substrate. Appl Phys Lett, 2016, 108(14), 143101

[27]

Wan Y, Li Q, Geng Y, et al. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band. Appl Phys Lett, 2015, 107(8), 081106

[28]

Fang A W, Park H, Bowers J E. Electrically pumped hybrid AlGaInAs–silicon evanescent laser. Opt Express, 2006, 14(20), 9203

[29]

Zhang C, Bowers J E. Silicon photonic terabit/s network-on-chip for datacenter interconnection. Opt Fiber Technol, 2018, 44, 2

[30]

Agrell E, Karlsson M, Chraplyvy A R, et al. Roadmap of optical communications. J Opt, 2016, 18(6), 063002

[31]

Urino Y, Usuki T, Fujikata J, et al. High-density and wide-bandwidth optical interconnects with silicon optical interposers. Photonics Res, 2014, 2(3), A1

[32]

Shimizu T, Hatori N, Arakawa Y. High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection. Group IV Photonics, 2011, 181

[33]

Jang B, Tanabe K, Kako S, et al. A hybrid silicon evanescent quantum dot laser. Appl Phys Express, 2016, 9(9), 092102

[34]

Wang H, Kim D, Harfouche M, et al. Narrow-linewidth oxide-confined heterogeneously integrated Si/III–V semiconductor lasers. IEEE Photonics Technol Lett, 2017, 29(24), 2199

[35]

Arakawa Y, Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl Phys Lett, 1982, 40(11), 939

[36]

Sugawara M, Usami M. Handiling the heat QD-lasers. Nat Photonics, 2009, 3, 30

[37]

Nishi K, Saito H, Sugou S, et al. A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates. Appl Phys Lett, 1999, 74(8), 1111

[38]

Nishi K, Takemasa K, Sugawara M, et al. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J Sel Top Quantum Electron, 2017, 23(6), 1

[39]

Takada K, Tanaka Y, Matsumoto T, et al. Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers. Electron Lett, 2011, 47(3), 206

[40]

Akrout A, Shen A, Brenot R, et al. Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a quantum-dash-based mode-locked laser. IEEE Photonics Technol Lett, 2009, 21(23), 1746

[41]

O'Brien D, Hegarty S P, Huyet G, et al. Sensitivity of quantum-dot semiconductor lasers to optical feedback. Opt Lett, 2004, 29(10), 1072

[42]

Zhou Y G, Zhou C, Cao C F, et al. Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge. Opt Express, 2017, 25(23), 28817

[43]

Liao M, Chen S, Park J S, et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 2018, 33(12), 123002

[44]

QD LASER. Available: https://www.qdlaser.com/potential/siphoto.html

[45]

Jung D, Norman J, Kennedy M J, et al. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si. Appl Phys Lett, 2017, 111(12), 122107

[46]

Shi B, Wang L, Taylor A A, et al. MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 μm quantum dot laser applications. Appl Phys Lett, 2019, 114(17), 172102

[47]

Wei W Q, Wang J H, Zhang B, et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm. Appl Phys Lett, 2018, 113(5), 053107

[48]

Ward T, Sánchez A M, Tang M, et al. Design rules for dislocation filters. J Appl Phys, 2014, 116(6), 063508

[49]

Volz K, Beyer A, Witte W, et al. GaP-nucleation on exact Si (001) substrates for III/V device integration. J Cryst Growth, 2011, 315(1), 37

[50]

Alcotte R, Martin M, Moeyaert J, et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility. APL Mater, 2016, 4(4), 046101

[51]

Zhang B, Wei W Q, Wang J H, et al. O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy. AIP Adv, 2019, 9(1), 015331

[52]

Jung D, Callahan P G, Shin B, et al. Low threading dislocation density GaAs growth on on-axis GaP/Si (001). J Appl Phys, 2017, 122(22), 225703

[53]

Lee A D, Jiang Q, Tang M C, et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J Sel Top Quantum Electron, 2013, 19(4), 1901107

[54]

Akiyama M, Kawarada Y, Ueda T, et al. Growth of high quality GaAs layers on Si substrate by MOCVD. J Cryst Growth, 1986, 77, 490

[55]

Tang M, Chen S, Wu J, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt Express, 2014, 22(10), 11528

[56]

Li W, Chen S, Tang M, et al. Effect of rapid thermal annealing on threading dislocation density in III–V epilayers monolithically grown on silicon. J Appl Phys, 2018, 123(21), 215303

[57]

Wan Y, Inoue D, Jung D, et al. Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability. Photonics Res, 2018, 6(8), 776

[58]

Urino Y, Shimizu T, Okano M, et al. First demonstration of high density optical interconnects integrated with lasers, optical modulators and photodetectors on single silicon substrate. Opt Express, 2011, 19(26), B159

[59]

Thomson D J, Gardes F Y, Fedeli J M, et al. 50-Gb/s silicon optical modulator. IEEE Photonics Technol Lett, 2012, 24(4), 234

[60]

Witzens J. High-speed silicon photonics modulators. Proc IEEE, 2018, 106(12), 2158

[61]

Ziebell M, Marris-Morini D, Rasigade G, et al. 40 Gbit/s low-loss silicon optical modulator based on a pipin diode. Opt Express, 2012, 20(10), 10591

[62]

Timurdogan E, Sorace-Agaskar C M, Sun J, et al. An ultralow power athermal silicon modulator. Nat Commun, 2014, 5, 4008

[63]

Debnath K, Thomson D J, Zhang W, et al. All-silicon carrier accumulation modulator based on a lateral metal–oxide–semiconductor capacitor. Photonics Res, 2018, 6(5), 373

[64]

Ishikawa Y, Wada K, Liu J, et al. Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate. J Appl Phys, 2005, 98(1), 013501

[65]

Ishikawa Y, Wada K, Cannon D D, et al. Strain-induced band gap shrinkage in Ge grown on Si substrate. Appl Phys Lett, 2003, 82(13), 2044

[66]

Yin T, Cohen R. 31GHz Ge n–i–p waveguide photodetectors on silicon-on-insulator substrate. Opt Express, 2007, 15(21), 13965

[67]

Dehlinger G, Koester S J, Schaub J D, et al. High-speed germanium-on-SOI lateral PIN photodiodes. IEEE Photonics Technol Lett, 2004, 16(11), 2547

[68]

Lischke S, Knoll D, Mai C, et al. High bandwidth, high responsivity waveguide-coupled germanium p–i–n photodiode. Opt Express, 2015, 23(21), 27213

[69]

Pathak S, Dumon P, Van Thourhout D, et al. Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator. IEEE Photonics J, 2014, 6(5), 1

[70]

Jeong S H, Tanaka Y. Silicon-wire optical demultiplexers based on multistage delayed Mach-Zehnder interferometers for higher production yield. Appl Opt, 2018, 57(22), 6474

[71]

Pathak S, Vanslembrouck M, Dumon P, et al. Optimized silicon AWG with flattened spectral response using an MMI aperture. J Lightwave Technol, 2013, 31(1), 87

[72]

Urino Y, Hatori N, Mizutani K, et al. First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C. J Lightwave Technol, 2015, 33(6), 1223

[73]

Kurata K, Suzuki Y, Kurihara M, et al. Prospect of chip scale silicon photonics transceiver for high density multi-mode wiring system. Opt Commun, 2016, 362, 36

[74]

Yashiki K, Uemura T, Kurihara M, et al. 25-Gbps/ch error-free operation over 300-m MMF of low-power-consumption silicon-photonics-based chip-scale optical I/O cores. IEICE Trans Electron, 2016, E99.C(2), 148

[75]

Nakamura T, Yashiki K, Mizutani K, et al. Fingertip-size optical module, optical io core, and its application in FPGA. 2019 the Institude of Electronics, Information and Communication Engineers, 2019, E102-C(4), 333

[76]

Aoki T, Sekiguchi S, Simoyama T, et al. Low-crosstalk simultaneous 16-channel × 25 Gb/s operation of high-density silicon photonics optical transceiver. J Lightwave Technol, 2018, 36(5), 1262

[77]

Srivastava A K, De Dobbelaere P, Armijo G, et al. Silicon-photonics-based optical transceivers for high-speed interconnect applications. In: Next-Generation Optical Networks for Data Centers and Short-Reach Links III, 2016, 9775, 977503

[78]

Meister S, Grehn M, Rhee H, et al. Silicon photonics for 100 Gbit/s intra-data center optical interconnects. In: Optical Interconnects XVI, 2016, 9753, 975308

[79]

Kupijai S, Rhee H, Al-Saadi A, et al. 25 Gb/s silicon photonics interconnect using a transmitter based on a node-matched-diode modulator. J Lightwave Technol, 2016, 34(12), 2920

[80]

Intel® silicon photonics 100G PSM4 optical transceiver brief. 2017

[81]

Intel® silicon photonics 100G CWDM4 optical transceiver brief. 2017

[82]

Driscoll J B, Doussiere P, Islam S. First 400G 8-channel CWDM silicon photonic integrated transmitter. 2018 IEEE 15th International Conference on Group IV Photonics (GFP), 2018

[83]

Moscoso-Martir A, Tabatabaei-Mashayekh A, Muller J, et al. 8-channel WDM silicon photonics transceiver with SOA and semiconductor mode-locked laser. Opt Express, 2018, 26(19), 25446

[84]

Verbist J, Lambrecht J, Verplaetse M, et al. Real-time and DSP-free 128 Gb/s PAM-4 link using a binary driven silicon photonic transmitter. J Lightwave Technol, 2019, 37(2), 274

[85]

Doerr C R, Chen L. Monolithic PDM-DQPSK receiver in silicon. 2010 36th European Conference and Exhibition on Optical Communication (Ecoc), 2010

[86]

Doerr C, Chen L, Vermeulen D, et al. Single-chip silicon photonics 100-Gbs coherent transceiver. Optical Fiber Communication Conference: Postdeadline Papers, 2014

[87]

Zhang Z, Li C, Chen J, et al. Coherent transceiver operating at 61-Gbaud/s. Opt Express, 2015, 23(15), 18988

[88]

IEEE Standard for Ethernet. IEEE 802.3bs, 2017

[89]

Shin S M, Kim H B. Fabrication of 53 Gb/s optical transceiver over 40-km transmission with PAM4 modulation. International Conference on Advanced Communications Technology, 2019

[90]

Depaoli E, Zhang H, Mazzini M, et al. A 64 Gb/s low-power transceiver for short-reach PAM-4 electrical links in 28-nm FDSOI CMOS. IEEE J Solid-State Circuits, 2019, 54(1), 6

[91]

SiFotonics Technologies & Products Brochure

[92]

Nagarajan R, Bhoja S, Issenhuth T. 100 Gbit/s, 120 km, PAM 4 based switch to switch, layer 2 silicon photonics based optical interconnects for datacenters. Hot Chips 28 Symposium, 2016

[93]

Doerr C R, Fontaine N K, Buhl L L. PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls. IEEE Photonics Technol Lett, 2012, 24(8), 697

[94]

Po D, Xiang L, Chandrasekhar S, et al. Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters. IEEE J Sel Top Quantum Electron, 2014, 20(4), 150

[95]

Sepehrian H, Lin J, Rusch L A, et al. Silicon photonic IQ modulators for 400 Gb/s and beyond. J Lightwave Technol, 2019, 37(13), 3078

[96]

Cheng J, Xie C, Chen Y, et al. Comparision of coherent and IMDD transceivers for intra datacenter optical interconnets. Optical Fiber Communication Conference 2019, 2019

[1]

Reinsel D, Gantz J, Rydning J. The digitization of the world-from egde to core. An IDC Whitepaper, 2018

[2]

Jones N. The information factories. Nature, 2018, 561(7722), 163

[3]

Miller D. Device requirements for optical interconnects to silicon chips. Proc IEEE, 2009, 97(7), 1166

[4]

Ohashi K, Nishi K, Shimizu T, et al. On-chip optical interconnect. Proc IEEE, 2009, 97(7), 1186

[5]

Lu Z G, Liu J R, Song C Y, et al. High performance InAs/InP quantum dot 34.462-GHz C-band coherent comb laser module. Opt Express, 2018, 26(2), 2160

[6]

Lv Z R, Zhang Z K, Yang X G, et al. Improved performance of 1.3-μm InAs/GaAs quantum dot lasers by direct Si doping. Appl Phys Lett, 2018, 113(1), 011105

[7]

Chen L, Xu Q, Wood M G, et al. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 2014, 1(2), 112

[8]

Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562(7725), 101

[9]

Liao S, Feng N N, Feng D. 36 GHz submicron silicon waveguide germanium photodetector. Opt Express, 2011, 19(11), 10967

[10]

Chen L, Doerr C R, Chen Y K, et al. Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides. IEEE Photonics Technol Lett, 2010, 22(23), 1744

[11]

Pinguet T, Denton S, Gloeckner S, et al. High-volume manufacturing platform for silicon photonics. Proc IEEE, 2018, 106(12), 2281

[12]

Deng Q Z, Liu L, Zhang R, et al. Athermal and flat-topped silicon Mach-Zehnder filters. Opt Express, 2016, 24(26), 29577

[13]

Hiraki T, Nishi H, Tsuchizawa T, et al. Si–Ge–silica monolithic integration platform and its application to a 22-Gb/s × 16-ch WDM receiver. IEEE Photonics J, 2013, 5(4), 4500407

[14]

Mekis A, Gloeckner S, Masini G, et al. A grating-coupler-enabled CMOS photonics platform. IEEE J Sel Top Quantum Electron, 2011, 17(3), 597

[15]

Winn J N, Rusin D, Kochanek C S. A high-speed silicon optical modulator based on a metal-oxide-semiconducor capacitor. Nature, 2004, 427(6975), 613

[16]

DeRose C T, Trotter D C, Zortman W A, et al. Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current. Opt Express, 2011, 19(25), 24897

[17]

Ennen H, Schneider J, Pomrenke G, et al. 1.54-μm luminescence of erbium-implanted III–V semiconductors and silicon. Appl Phys Lett, 1983, 43(10), 943

[18]

Wirths S, Geiger R, von den Driesch N, et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat Photonics, 2015, 9(2), 88

[19]

d'Avezac M, Luo J W, Chanier T, et al. Genetic-algorithm discovery of a direct-gap and optically allowed superstructure from indirect-gap Si and Ge semiconductors. Phys Rev Lett, 2012, 108(2), 027401

[20]

Camacho-Aguilera R E, Cai Y, Patel N, et al. An electrically pumped germanium laser. Opt Express, 2012, 20(10), 11316

[21]

Zhou Z, Yin B, Michel J. On-chip light sources for silicon photonics. Light: Sci Appl, 2015, 4(11), e358

[22]

Kobayashi N, Sato K, Namiwaka M, et al. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. J Lightwave Technol, 2015, 33(6), 1241

[23]

Wang T, Liu H. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 2011, 19(12), 11381

[24]

Chen S, Li W, Wu J, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 2016, 10(5), 307

[25]

Li Q, Ng K W, Lau K M. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett, 2015, 106(7), 072105

[26]

Schulze C S, Huang X, Prohl C, et al. Atomic structure and stoichiometry of In(Ga)As/GaAs quantum dots grown on an exact-oriented GaP/Si(001) substrate. Appl Phys Lett, 2016, 108(14), 143101

[27]

Wan Y, Li Q, Geng Y, et al. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band. Appl Phys Lett, 2015, 107(8), 081106

[28]

Fang A W, Park H, Bowers J E. Electrically pumped hybrid AlGaInAs–silicon evanescent laser. Opt Express, 2006, 14(20), 9203

[29]

Zhang C, Bowers J E. Silicon photonic terabit/s network-on-chip for datacenter interconnection. Opt Fiber Technol, 2018, 44, 2

[30]

Agrell E, Karlsson M, Chraplyvy A R, et al. Roadmap of optical communications. J Opt, 2016, 18(6), 063002

[31]

Urino Y, Usuki T, Fujikata J, et al. High-density and wide-bandwidth optical interconnects with silicon optical interposers. Photonics Res, 2014, 2(3), A1

[32]

Shimizu T, Hatori N, Arakawa Y. High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection. Group IV Photonics, 2011, 181

[33]

Jang B, Tanabe K, Kako S, et al. A hybrid silicon evanescent quantum dot laser. Appl Phys Express, 2016, 9(9), 092102

[34]

Wang H, Kim D, Harfouche M, et al. Narrow-linewidth oxide-confined heterogeneously integrated Si/III–V semiconductor lasers. IEEE Photonics Technol Lett, 2017, 29(24), 2199

[35]

Arakawa Y, Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl Phys Lett, 1982, 40(11), 939

[36]

Sugawara M, Usami M. Handiling the heat QD-lasers. Nat Photonics, 2009, 3, 30

[37]

Nishi K, Saito H, Sugou S, et al. A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates. Appl Phys Lett, 1999, 74(8), 1111

[38]

Nishi K, Takemasa K, Sugawara M, et al. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J Sel Top Quantum Electron, 2017, 23(6), 1

[39]

Takada K, Tanaka Y, Matsumoto T, et al. Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers. Electron Lett, 2011, 47(3), 206

[40]

Akrout A, Shen A, Brenot R, et al. Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a quantum-dash-based mode-locked laser. IEEE Photonics Technol Lett, 2009, 21(23), 1746

[41]

O'Brien D, Hegarty S P, Huyet G, et al. Sensitivity of quantum-dot semiconductor lasers to optical feedback. Opt Lett, 2004, 29(10), 1072

[42]

Zhou Y G, Zhou C, Cao C F, et al. Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge. Opt Express, 2017, 25(23), 28817

[43]

Liao M, Chen S, Park J S, et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 2018, 33(12), 123002

[44]

QD LASER. Available: https://www.qdlaser.com/potential/siphoto.html

[45]

Jung D, Norman J, Kennedy M J, et al. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si. Appl Phys Lett, 2017, 111(12), 122107

[46]

Shi B, Wang L, Taylor A A, et al. MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 μm quantum dot laser applications. Appl Phys Lett, 2019, 114(17), 172102

[47]

Wei W Q, Wang J H, Zhang B, et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm. Appl Phys Lett, 2018, 113(5), 053107

[48]

Ward T, Sánchez A M, Tang M, et al. Design rules for dislocation filters. J Appl Phys, 2014, 116(6), 063508

[49]

Volz K, Beyer A, Witte W, et al. GaP-nucleation on exact Si (001) substrates for III/V device integration. J Cryst Growth, 2011, 315(1), 37

[50]

Alcotte R, Martin M, Moeyaert J, et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility. APL Mater, 2016, 4(4), 046101

[51]

Zhang B, Wei W Q, Wang J H, et al. O-band InAs/GaAs quantum-dot microcavity laser on Si (001) hollow substrate by in-situ hybrid epitaxy. AIP Adv, 2019, 9(1), 015331

[52]

Jung D, Callahan P G, Shin B, et al. Low threading dislocation density GaAs growth on on-axis GaP/Si (001). J Appl Phys, 2017, 122(22), 225703

[53]

Lee A D, Jiang Q, Tang M C, et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J Sel Top Quantum Electron, 2013, 19(4), 1901107

[54]

Akiyama M, Kawarada Y, Ueda T, et al. Growth of high quality GaAs layers on Si substrate by MOCVD. J Cryst Growth, 1986, 77, 490

[55]

Tang M, Chen S, Wu J, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt Express, 2014, 22(10), 11528

[56]

Li W, Chen S, Tang M, et al. Effect of rapid thermal annealing on threading dislocation density in III–V epilayers monolithically grown on silicon. J Appl Phys, 2018, 123(21), 215303

[57]

Wan Y, Inoue D, Jung D, et al. Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability. Photonics Res, 2018, 6(8), 776

[58]

Urino Y, Shimizu T, Okano M, et al. First demonstration of high density optical interconnects integrated with lasers, optical modulators and photodetectors on single silicon substrate. Opt Express, 2011, 19(26), B159

[59]

Thomson D J, Gardes F Y, Fedeli J M, et al. 50-Gb/s silicon optical modulator. IEEE Photonics Technol Lett, 2012, 24(4), 234

[60]

Witzens J. High-speed silicon photonics modulators. Proc IEEE, 2018, 106(12), 2158

[61]

Ziebell M, Marris-Morini D, Rasigade G, et al. 40 Gbit/s low-loss silicon optical modulator based on a pipin diode. Opt Express, 2012, 20(10), 10591

[62]

Timurdogan E, Sorace-Agaskar C M, Sun J, et al. An ultralow power athermal silicon modulator. Nat Commun, 2014, 5, 4008

[63]

Debnath K, Thomson D J, Zhang W, et al. All-silicon carrier accumulation modulator based on a lateral metal–oxide–semiconductor capacitor. Photonics Res, 2018, 6(5), 373

[64]

Ishikawa Y, Wada K, Liu J, et al. Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate. J Appl Phys, 2005, 98(1), 013501

[65]

Ishikawa Y, Wada K, Cannon D D, et al. Strain-induced band gap shrinkage in Ge grown on Si substrate. Appl Phys Lett, 2003, 82(13), 2044

[66]

Yin T, Cohen R. 31GHz Ge n–i–p waveguide photodetectors on silicon-on-insulator substrate. Opt Express, 2007, 15(21), 13965

[67]

Dehlinger G, Koester S J, Schaub J D, et al. High-speed germanium-on-SOI lateral PIN photodiodes. IEEE Photonics Technol Lett, 2004, 16(11), 2547

[68]

Lischke S, Knoll D, Mai C, et al. High bandwidth, high responsivity waveguide-coupled germanium p–i–n photodiode. Opt Express, 2015, 23(21), 27213

[69]

Pathak S, Dumon P, Van Thourhout D, et al. Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator. IEEE Photonics J, 2014, 6(5), 1

[70]

Jeong S H, Tanaka Y. Silicon-wire optical demultiplexers based on multistage delayed Mach-Zehnder interferometers for higher production yield. Appl Opt, 2018, 57(22), 6474

[71]

Pathak S, Vanslembrouck M, Dumon P, et al. Optimized silicon AWG with flattened spectral response using an MMI aperture. J Lightwave Technol, 2013, 31(1), 87

[72]

Urino Y, Hatori N, Mizutani K, et al. First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 °C. J Lightwave Technol, 2015, 33(6), 1223

[73]

Kurata K, Suzuki Y, Kurihara M, et al. Prospect of chip scale silicon photonics transceiver for high density multi-mode wiring system. Opt Commun, 2016, 362, 36

[74]

Yashiki K, Uemura T, Kurihara M, et al. 25-Gbps/ch error-free operation over 300-m MMF of low-power-consumption silicon-photonics-based chip-scale optical I/O cores. IEICE Trans Electron, 2016, E99.C(2), 148

[75]

Nakamura T, Yashiki K, Mizutani K, et al. Fingertip-size optical module, optical io core, and its application in FPGA. 2019 the Institude of Electronics, Information and Communication Engineers, 2019, E102-C(4), 333

[76]

Aoki T, Sekiguchi S, Simoyama T, et al. Low-crosstalk simultaneous 16-channel × 25 Gb/s operation of high-density silicon photonics optical transceiver. J Lightwave Technol, 2018, 36(5), 1262

[77]

Srivastava A K, De Dobbelaere P, Armijo G, et al. Silicon-photonics-based optical transceivers for high-speed interconnect applications. In: Next-Generation Optical Networks for Data Centers and Short-Reach Links III, 2016, 9775, 977503

[78]

Meister S, Grehn M, Rhee H, et al. Silicon photonics for 100 Gbit/s intra-data center optical interconnects. In: Optical Interconnects XVI, 2016, 9753, 975308

[79]

Kupijai S, Rhee H, Al-Saadi A, et al. 25 Gb/s silicon photonics interconnect using a transmitter based on a node-matched-diode modulator. J Lightwave Technol, 2016, 34(12), 2920

[80]

Intel® silicon photonics 100G PSM4 optical transceiver brief. 2017

[81]

Intel® silicon photonics 100G CWDM4 optical transceiver brief. 2017

[82]

Driscoll J B, Doussiere P, Islam S. First 400G 8-channel CWDM silicon photonic integrated transmitter. 2018 IEEE 15th International Conference on Group IV Photonics (GFP), 2018

[83]

Moscoso-Martir A, Tabatabaei-Mashayekh A, Muller J, et al. 8-channel WDM silicon photonics transceiver with SOA and semiconductor mode-locked laser. Opt Express, 2018, 26(19), 25446

[84]

Verbist J, Lambrecht J, Verplaetse M, et al. Real-time and DSP-free 128 Gb/s PAM-4 link using a binary driven silicon photonic transmitter. J Lightwave Technol, 2019, 37(2), 274

[85]

Doerr C R, Chen L. Monolithic PDM-DQPSK receiver in silicon. 2010 36th European Conference and Exhibition on Optical Communication (Ecoc), 2010

[86]

Doerr C, Chen L, Vermeulen D, et al. Single-chip silicon photonics 100-Gbs coherent transceiver. Optical Fiber Communication Conference: Postdeadline Papers, 2014

[87]

Zhang Z, Li C, Chen J, et al. Coherent transceiver operating at 61-Gbaud/s. Opt Express, 2015, 23(15), 18988

[88]

IEEE Standard for Ethernet. IEEE 802.3bs, 2017

[89]

Shin S M, Kim H B. Fabrication of 53 Gb/s optical transceiver over 40-km transmission with PAM4 modulation. International Conference on Advanced Communications Technology, 2019

[90]

Depaoli E, Zhang H, Mazzini M, et al. A 64 Gb/s low-power transceiver for short-reach PAM-4 electrical links in 28-nm FDSOI CMOS. IEEE J Solid-State Circuits, 2019, 54(1), 6

[91]

SiFotonics Technologies & Products Brochure

[92]

Nagarajan R, Bhoja S, Issenhuth T. 100 Gbit/s, 120 km, PAM 4 based switch to switch, layer 2 silicon photonics based optical interconnects for datacenters. Hot Chips 28 Symposium, 2016

[93]

Doerr C R, Fontaine N K, Buhl L L. PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls. IEEE Photonics Technol Lett, 2012, 24(8), 697

[94]

Po D, Xiang L, Chandrasekhar S, et al. Monolithic silicon photonic integrated circuits for compact 100+Gb/s coherent optical receivers and transmitters. IEEE J Sel Top Quantum Electron, 2014, 20(4), 150

[95]

Sepehrian H, Lin J, Rusch L A, et al. Silicon photonic IQ modulators for 400 Gb/s and beyond. J Lightwave Technol, 2019, 37(13), 3078

[96]

Cheng J, Xie C, Chen Y, et al. Comparision of coherent and IMDD transceivers for intra datacenter optical interconnets. Optical Fiber Communication Conference 2019, 2019

Search

Advanced Search >>

GET CITATION

H M Wang, H Y Chai, Z Lv, Z K Zhang, L Meng, X G Yang, T Yang, Silicon photonic transceivers for application in data centers[J]. J. Semicond., 2020, 41(10): 101301. doi: 10.1088/1674-4926/41/10/101301.

Export: BibTex EndNote

Article Metrics

Article views: 1945 Times PDF downloads: 144 Times Cited by: 0 Times

History

Manuscript received: 22 December 2019 Manuscript revised: 11 March 2020 Online: Accepted Manuscript: 29 April 2020 Uncorrected proof: 10 September 2020 Published: 01 October 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误