J. Semicond. >  Just Accepted

ARTICLES

Enhanced low dose rate sensitivity and pre-irradiation elevated-temperature stress effects in bipolar devices: role of hydrogen in the passivation layer

Shilong Gou, Wuying Ma, Zhibin Yao, Zujun Wang, Jiangkun Sheng and Yuanyuan Xue

+ Author Affiliations

 Corresponding author: Shilong Gou, shilonggouxd@163.com

DOI: 10.1088/1674-4926/25090014CSTR: 10.1088/1674-4926/25090014

PDF

Turn off MathJax

Abstract: Enhanced low dose rate sensitivity (ELDRS) experiments were carried out on four commercial bipolar integrated circuits at dose rates ranging from 0.002 to 50 rad(Si)/s. Additionally, pre-irradiation elevated-temperature stress (PETS) experiments were conducted on the same devices at temperatures of 250 °C and 400 °C. The results show that for some devices, the radiation degradation when irradiated at an ultra-low dose rate of 0.002 rad(Si)/s is more than three times greater than that at a common low dose rate of 0.01 rad(Si)/s. Moreover, the maximum enhancement factor of the PETS effects reaches 20.3. It was also discovered that for devices exhibiting PETS effects, the saturation dose rate of ELDRS is less than 0.01 rad(Si)/s. A comprehensive analysis of the composition of the passivation layers indicated that the type and concentration of hydrogen bonds in these layers are the main factors contributing to the experimental outcomes.

Key words: bipolar integrated circuitspassivation layersenhanced low dose rate sensitivitypre-irradiation elevated-temperature stress



[1]
Brunetti G, Campiti G, Tagliente M, et al. COTS devices for space missions in LEO. IEEE Access, 2024, 12, 76478 doi: 10.1109/ACCESS.2024.3405373
[2]
Zhao J K, Chong K S, Shu W, et al. Detection and protection of a COTS system against micro-single-event-latchups (μ-SELs) and SELs: A step toward the next-paradigm in new space. IEEE Trans Nucl Sci, 2025, 72(8), 2680 doi: 10.1109/TNS.2025.3539473
[3]
Benedetto A R, Barnaby H J, Cook C, et al. In-flight demonstration of enhanced-low-dose-rate-sensitivity (ELDRS) in bipolar junction transistors. 2022 IEEE Aerospace Conference (AERO), 2022, 1
[4]
Privat A, Barnaby H J, Tolleson B S, et al. Temperature dependence of bipolar junction transistor current-voltage characteristics after low dose rate irradiation. Microelectron Reliab, 2020, 113, 113947 doi: 10.1016/j.microrel.2020.113947
[5]
Fleetwood D M. Radiation effects in a post-Moore world. IEEE Trans Nucl Sci, 2021, 68(5), 509 doi: 10.1109/TNS.2021.3053424
[6]
Chen D K, Pease R, Kruckmeyer K, et al. Enhanced low dose rate sensitivity at ultra-low dose rates. IEEE Trans Nucl Sci, 2011, 58(6), 2983 doi: 10.1109/TNS.2011.2171720
[7]
Borghello G, Termo G, Faccio F, et al. ELDRS in a commercial 28-nm CMOS technology. IEEE Trans Nucl Sci, 2025, 72(8), 2276 doi: 10.1109/TNS.2025.3543658
[8]
Fleetwood D M, Rodgers M P, Tsetseris L, et al. Effects of device aging on microelectronics radiation response and reliability. Microelectron Reliab, 2007, 47(7), 1075 doi: 10.1016/j.microrel.2006.06.009
[9]
Shaneyfelt M R, Schwank J R, Witczak S C, et al. Thermal-stress effects and enhanced low dose rate sensitivity in linear bipolar ICs. IEEE Trans Nucl Sci, 2000, 47(6), 2539 doi: 10.1109/23.903805
[10]
Seiler J E, Platteter D G, Dunham G W, et al. Effect of passivation on the enhanced low dose rate sensitivity of national LM124 operational amplifiers. 2004 IEEE Radiation Effects Data Workshop, 2004, 42
[11]
Shaneyfelt M R, Pease R L, Schwank J R, et al. Impact of passivation layers on enhanced low-dose-rate sensitivity and pre-irradiation elevated-temperature stress effects in bipolar linear ICs. IEEE Trans Nucl Sci, 2002, 49(6), 3171 doi: 10.1109/TNS.2002.805365
[12]
Cizmarik R R, Schrimpf R D, Fleetwood D M, et al. The impact of mechanical stress on the total-dose response of linear bipolar transistors with various passivation layers. IEEE Trans Nucl Sci, 2005, 52(5), 1513 doi: 10.1109/TNS.2005.855815
[13]
Yang J Q, Dong L, Liu C M, et al. Impact of nitride passivation layer on ionizing irradiation damage on LPNP bipolar transistors. Acta Phys Sin, 2018, 67(16), 168501 doi: 10.7498/aps.67.20172215
[14]
Pershenkov V S, Felitsyn V A, Bakerenkov A S, et al. Testing for enhanced low dose rate sensitivity and reduced low dose rate sensitivity bipolar devices. 2021 IEEE 32nd International Conference on Microelectronics (MIEL), 2021, 361
[15]
Chumakov A I. A new approach of simulating low-dose-rate radiation effects in bipolar integrated circuits. Russ Microelectron, 2024, 53(2), 154 doi: 10.1134/S1063739723600966
[16]
Giorgis F, Pirri C F, Tresso E. Structural properties of a-Si1-xNx: H films grown by plasma enhanced chemical vapour deposition by SiH4 + NH3 + H2 gas mixtures. Thin Solid Films, 1997, 307(1/2), 298
[17]
Hasegawa S, He L, Amano Y, et al. Analysis of SiH and SiN vibrational absorption in amorphous SiNx: H films in terms of a charge-transfer model. Phys Rev B, 1993, 48(8), 5315 doi: 10.1103/PhysRevB.48.5315
[18]
Tsu D V, Lucovsky G, Mantini M J. Local atomic structure in thin films of silicon nitride and silicon diimide produced by remote plasma-enhanced chemical-vapor deposition. Phys Rev B, 1986, 33(10), 7069 doi: 10.1103/PhysRevB.33.7069
[19]
Gou S L, Ma W Y, Yao Z B, et al. Radiation mechanism of gate-controlled lateral PNP bipolar transistors in the hydrogen environment. Asta Phys Sin, 2021, 70(15), 156101 doi: 10.7498/aps.70.20210351
[20]
Hjalmarson H P, Witczak S C, Roark S Z, et al. Simplified calculations of radiation dose-rate sensitivity of bipolar transistors. 2021 21th European Conference on Radiation and Its Effects on Components and Systems (RADECS), 2021, 1
[21]
Song Y, Qiu C, Zhou H, et al. Mechanisms and models of interface trap annealing in positively-biased MOS devices. J Phys D: Appl Phys, 2025, 58(2), 025109 doi: 10.1088/1361-6463/ad8502
[22]
Esqueda I S, Barnaby H J, Adell P C. Modeling the effects of hydrogen on the mechanisms of dose rate sensitivity. IEEE Trans Nucl Sci, 2012, 59(4), 701 doi: 10.1109/TNS.2012.2195201
[23]
Xiang C F, Li X L, Lu W, et al. Investigation of ionization-induced parameter degradation in GLPNP bipolar transistors at different temperatures. Atomic Energy Science and Technology, 2021, 55(12), 2183
[24]
Fleetwood D M, Schrimpf R D, Pantelides S T, et al. Electron capture, hydrogen release, and enhanced gain degradation in linear bipolar devices. IEEE Trans Nucl Sci, 2008, 55(6), 2986 doi: 10.1109/TNS.2008.2006485
Fig. 1.  (Color online) Structure of lateral PNP (LPNP) bipolar junction transistor[13].

Fig. 2.  (Color online) ΔIB of (a) TSB7192 (b) TSB712 (c) LM139 (d) LM211 versus total dose under different dose rate irradiated (dose rate = 50, 0.1, 0.01, 0.002 rad(Si)/s).

Fig. 3.  (Color online) ΔIB of (a) TSB7192 (b) TSB712 (c) LM139 (d) LM211 versus total dose under different pre-irradiation elevated-temperature stress (250 °C and 400 °C)

Fig. 4.  (Color online) The infrared spectra of passivation layers in 4 experimental samples.

Fig. 5.  (Color online) Density of NH, NH2 and SH2 bonds in passivation layers

Fig. 6.  (Color online) Schematic diagram of the impact mechanism of passivation layers on ELDRS effect

Fig. 7.  (Color online) Schematic diagram of the impact mechanism of passivation layers on PETS effect: (a) process of elevated-temperature stress before irradiation (b) process of high-dose-rate irradiation

Fig. 8.  (Color online) Comparison of ΔIB vs. total dose of bipolar devices under different interval time between elevated-temperature stress and irradiation: (a) TSB7192; (b) TSB712.

Table 1.   Comparison of ELDRS and PETS effect enhanced factors in bipolar devices.

Effect typeParameterTSB7192TSB712LM139LM211
ELDRSmaximum EF45.825.71.53.3
SDR /(rad(Si)/s)<0.01<0.01<0.01≥0.1
PETSmaximum EF10.920.32.31.12
WE /°C400400400400
DownLoad: CSV

Table 2.   EDX analysis results of passivation layer materials in 4 experimental samples.

ElementTSB7192TSB712LM211LM139
Wt%At%Wt%At%Wt%At%Wt%At%
Si46.1429.0965.2749.8137.8022.1473.6761.32
N27.8135.1523.8636.5029.0934.1719.7632.98
C19.7329.090.000.0028.9939.720.000.00
O5.626.229.2512.393.493.590.000.00
Al0.690.451.631.290.640.396.575.70
Total100.00100.00100.00100.00100.00100.00100.00100.00
DownLoad: CSV
[1]
Brunetti G, Campiti G, Tagliente M, et al. COTS devices for space missions in LEO. IEEE Access, 2024, 12, 76478 doi: 10.1109/ACCESS.2024.3405373
[2]
Zhao J K, Chong K S, Shu W, et al. Detection and protection of a COTS system against micro-single-event-latchups (μ-SELs) and SELs: A step toward the next-paradigm in new space. IEEE Trans Nucl Sci, 2025, 72(8), 2680 doi: 10.1109/TNS.2025.3539473
[3]
Benedetto A R, Barnaby H J, Cook C, et al. In-flight demonstration of enhanced-low-dose-rate-sensitivity (ELDRS) in bipolar junction transistors. 2022 IEEE Aerospace Conference (AERO), 2022, 1
[4]
Privat A, Barnaby H J, Tolleson B S, et al. Temperature dependence of bipolar junction transistor current-voltage characteristics after low dose rate irradiation. Microelectron Reliab, 2020, 113, 113947 doi: 10.1016/j.microrel.2020.113947
[5]
Fleetwood D M. Radiation effects in a post-Moore world. IEEE Trans Nucl Sci, 2021, 68(5), 509 doi: 10.1109/TNS.2021.3053424
[6]
Chen D K, Pease R, Kruckmeyer K, et al. Enhanced low dose rate sensitivity at ultra-low dose rates. IEEE Trans Nucl Sci, 2011, 58(6), 2983 doi: 10.1109/TNS.2011.2171720
[7]
Borghello G, Termo G, Faccio F, et al. ELDRS in a commercial 28-nm CMOS technology. IEEE Trans Nucl Sci, 2025, 72(8), 2276 doi: 10.1109/TNS.2025.3543658
[8]
Fleetwood D M, Rodgers M P, Tsetseris L, et al. Effects of device aging on microelectronics radiation response and reliability. Microelectron Reliab, 2007, 47(7), 1075 doi: 10.1016/j.microrel.2006.06.009
[9]
Shaneyfelt M R, Schwank J R, Witczak S C, et al. Thermal-stress effects and enhanced low dose rate sensitivity in linear bipolar ICs. IEEE Trans Nucl Sci, 2000, 47(6), 2539 doi: 10.1109/23.903805
[10]
Seiler J E, Platteter D G, Dunham G W, et al. Effect of passivation on the enhanced low dose rate sensitivity of national LM124 operational amplifiers. 2004 IEEE Radiation Effects Data Workshop, 2004, 42
[11]
Shaneyfelt M R, Pease R L, Schwank J R, et al. Impact of passivation layers on enhanced low-dose-rate sensitivity and pre-irradiation elevated-temperature stress effects in bipolar linear ICs. IEEE Trans Nucl Sci, 2002, 49(6), 3171 doi: 10.1109/TNS.2002.805365
[12]
Cizmarik R R, Schrimpf R D, Fleetwood D M, et al. The impact of mechanical stress on the total-dose response of linear bipolar transistors with various passivation layers. IEEE Trans Nucl Sci, 2005, 52(5), 1513 doi: 10.1109/TNS.2005.855815
[13]
Yang J Q, Dong L, Liu C M, et al. Impact of nitride passivation layer on ionizing irradiation damage on LPNP bipolar transistors. Acta Phys Sin, 2018, 67(16), 168501 doi: 10.7498/aps.67.20172215
[14]
Pershenkov V S, Felitsyn V A, Bakerenkov A S, et al. Testing for enhanced low dose rate sensitivity and reduced low dose rate sensitivity bipolar devices. 2021 IEEE 32nd International Conference on Microelectronics (MIEL), 2021, 361
[15]
Chumakov A I. A new approach of simulating low-dose-rate radiation effects in bipolar integrated circuits. Russ Microelectron, 2024, 53(2), 154 doi: 10.1134/S1063739723600966
[16]
Giorgis F, Pirri C F, Tresso E. Structural properties of a-Si1-xNx: H films grown by plasma enhanced chemical vapour deposition by SiH4 + NH3 + H2 gas mixtures. Thin Solid Films, 1997, 307(1/2), 298
[17]
Hasegawa S, He L, Amano Y, et al. Analysis of SiH and SiN vibrational absorption in amorphous SiNx: H films in terms of a charge-transfer model. Phys Rev B, 1993, 48(8), 5315 doi: 10.1103/PhysRevB.48.5315
[18]
Tsu D V, Lucovsky G, Mantini M J. Local atomic structure in thin films of silicon nitride and silicon diimide produced by remote plasma-enhanced chemical-vapor deposition. Phys Rev B, 1986, 33(10), 7069 doi: 10.1103/PhysRevB.33.7069
[19]
Gou S L, Ma W Y, Yao Z B, et al. Radiation mechanism of gate-controlled lateral PNP bipolar transistors in the hydrogen environment. Asta Phys Sin, 2021, 70(15), 156101 doi: 10.7498/aps.70.20210351
[20]
Hjalmarson H P, Witczak S C, Roark S Z, et al. Simplified calculations of radiation dose-rate sensitivity of bipolar transistors. 2021 21th European Conference on Radiation and Its Effects on Components and Systems (RADECS), 2021, 1
[21]
Song Y, Qiu C, Zhou H, et al. Mechanisms and models of interface trap annealing in positively-biased MOS devices. J Phys D: Appl Phys, 2025, 58(2), 025109 doi: 10.1088/1361-6463/ad8502
[22]
Esqueda I S, Barnaby H J, Adell P C. Modeling the effects of hydrogen on the mechanisms of dose rate sensitivity. IEEE Trans Nucl Sci, 2012, 59(4), 701 doi: 10.1109/TNS.2012.2195201
[23]
Xiang C F, Li X L, Lu W, et al. Investigation of ionization-induced parameter degradation in GLPNP bipolar transistors at different temperatures. Atomic Energy Science and Technology, 2021, 55(12), 2183
[24]
Fleetwood D M, Schrimpf R D, Pantelides S T, et al. Electron capture, hydrogen release, and enhanced gain degradation in linear bipolar devices. IEEE Trans Nucl Sci, 2008, 55(6), 2986 doi: 10.1109/TNS.2008.2006485
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5 Times PDF downloads: 4 Times Cited by: 0 Times

    History

    Received: 15 September 2024 Revised: 28 October 2025 Online: Accepted Manuscript: 19 November 2025

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shilong Gou, Wuying Ma, Zhibin Yao, Zujun Wang, Jiangkun Sheng, Yuanyuan Xue. Enhanced low dose rate sensitivity and pre-irradiation elevated-temperature stress effects in bipolar devices: role of hydrogen in the passivation layer[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25090014 ****S L Gou, W Y Ma, Z B Yao, Z J Wang, J K Sheng, and Y Y Xue, Enhanced low dose rate sensitivity and pre-irradiation elevated-temperature stress effects in bipolar devices: role of hydrogen in the passivation layer[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25090014
      Citation:
      Shilong Gou, Wuying Ma, Zhibin Yao, Zujun Wang, Jiangkun Sheng, Yuanyuan Xue. Enhanced low dose rate sensitivity and pre-irradiation elevated-temperature stress effects in bipolar devices: role of hydrogen in the passivation layer[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25090014 ****
      S L Gou, W Y Ma, Z B Yao, Z J Wang, J K Sheng, and Y Y Xue, Enhanced low dose rate sensitivity and pre-irradiation elevated-temperature stress effects in bipolar devices: role of hydrogen in the passivation layer[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25090014

      Enhanced low dose rate sensitivity and pre-irradiation elevated-temperature stress effects in bipolar devices: role of hydrogen in the passivation layer

      DOI: 10.1088/1674-4926/25090014
      CSTR: 10.1088/1674-4926/25090014
      More Information
      • Shilong Gou received his MS degree from Xidian University, Xi'an, China, in 2019. He is currently an assistant researcher at Northwest Institute of Nuclear Technology, Xi'an, China. His research focuses on radiation effects of electronic devices
      • Corresponding author: shilonggouxd@163.com
      • Received Date: 2024-09-15
      • Revised Date: 2025-10-28
      • Available Online: 2025-11-19

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return