J. Semicond. >  In Press

ARTICLES

Ultrathin amorphous-Ga2O3 vertical SBD-based bridge rectifier and its hybrid buck system

Haifeng Chen, Yuduo Zhang, Xiexin Sun, Xuyang Liu, Chunling Chen, Xiangtai Liu, Jia Zhang and Yahan Zhu

+ Author Affiliations

 Corresponding author: Haifeng Chen, chenhaifeng@xupt.edu.cn

DOI: 10.1088/1674-4926/25100008CSTR: 32376.14.1674-4926.25100008

PDF

Turn off MathJax

Abstract: This paper demonstrated a monolithically integrated 200 nm-ultrathin amorphous-Ga2O3 vertical SBD-based bridge rectifier and its hybrid buck conversion system with a Si-MOSFET. The fabricated vertical Ga2O3 SBD exhibits excellent characteristics and a high breakdown electric field strength of 1.35 MV/cm. The bridge rectifier circuit maintains stable operation at high frequencies of 50 kHz. And the hybrid buck system composed of the Ga2O3 bridge rectifier and Si-MOSFET achieves adjustable step-down voltage output under the conditions of a 20 kHz switching frequency of Si-MOSFET and 50 Hz Vin. This work validates the practical value of Ga2O3 rectifiers in high-frequency conversion systems.

Key words: amorphous-Ga2O3Schottky barrier diodebridge rectifierbuck system



[1]
Higashiwaki M, Wong M H. Beta-gallium oxide material and device technologies. Annu Rev Mater Res, 2024, 54(1): 175 doi: 10.1146/annurev-matsci-080921-104058
[2]
Ahmadi E, Oshima Y. Materials issues and devices of α- and β-Ga2O3. J Appl Phys, 2019, 126(16): 160901 doi: 10.1063/1.5123213
[3]
Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100: 013504 doi: 10.1063/1.3674287
[4]
Al-Ahmadi N A. Metal oxide semiconductor-based Schottky diodes: A review of recent advances. Mater Res Express, 2020, 7(3): 032001 doi: 10.1088/2053-1591/ab7a60
[5]
Kim M, Seo J H, Singisetti U, et al. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond. J Mater Chem C, 2017, 5(33): 8338 doi: 10.1039/C7TC02221B
[6]
Wilhelmi F, Komatsu Y, Yamaguchi S, et al. Switching properties of 600 V Ga2O3 diodes with different chip sizes and thicknesses. IEEE Trans Power Electron, 2023, 38(7): 8406 doi: 10.1109/TPEL.2023.3260023
[7]
Jahdi S, Kumar A S, Deakin M, et al. β-Ga2O3 in power electronics converters: Opportunities & challenges. IEEE Open J Power Electron, 2024, 5: 554 doi: 10.1109/OJPEL.2024.3387076
[8]
Taboada Vasquez J M, Li X H. A review of vertical Ga2O3 diodes: From fabrication to performance optimization and future outlooks. Phys Status Solidi B, 2025, 262(8): 2400635
[9]
Dwari S, Parsa L. An efficient AC–DC step-up converter for low-voltage energy harvesting. IEEE Trans Power Electron, 2010, 25(8): 2188 doi: 10.1109/TPEL.2010.2044192
[10]
Mansouri M, Kaboli S, Selvaraj J, et al. A review of single phase power factor correction A. C.-D. C. converters. 2013 IEEE Conference on Clean Energy and Technology (CEAT), 2013: 389
[11]
Gabriel K, Fayrouz H, Nessakh B, et al. 2.45GHz low-power diode bridge rectifier design. 2023 International Conference on Microelectronics (ICM), 2023: 979-8-3 doi: 10.1109/ICM60448.2023.10378938
[12]
Zhou K, He Q M, Jian G Z, et al. A unified hybrid compact model of β-Ga2O3 Schottky barrier diodes for mixer and rectifier applications. Sci China Inf Sci, 2021, 64(11): 219403 doi: 10.1007/s11432-021-3224-2
[13]
Hong W, Zhang C, Zhang F, et al. Performance improvement of β-Ga2O3 SBD-based rectifier with embedded microchannels in ceramic substrate. Sci China Inf Sci, 2024, 67(5): 159404 doi: 10.1007/s11432-024-3992-8
[14]
Chen H F, Zhang Y D, Sun X X, et al. Solar-blind UV light-modulated β-Ga2O3 full-wave bridge rectifier. J Semicond, 2026, 47: 012301 doi: 10.1088/1674-4926/25040027
[15]
Kaur D, Rakhi, Vashishtha P, et al. Surface nanopatterning of amorphous gallium oxide thin film for enhanced solar-blind photodetection. Nanotechnology, 2022, 33, 375302 doi: 10.1088/1361-6528/ac76d3
Fig. 1.  (Color online) (a) Image of fabricated Ga2O3 full-wave bridge rectifier; (b) 3D schematic diagram of rectifier; (c) cross-sectional view of a single vertical SBD; (d) schematic illustration of the rectifier after wire bonding.

Fig. 2.  (Color online) (a) XPS survey of as-grown amorphous Ga2O3 film on Au layer; (b) high-resolution Ga 3d spectrum; (c) high-resolution O 1s spectrum; (d) I–V curves of SBD; (e) I–V curves of SBD in the semi-logarithmic coordinate; (f) reverse breakdown characteristics of SBD.

Fig. 3.  (Color online) (a) Half-wave rectification characteristics of single SBD at different frequencies; the inset shows the test setup; (b)square wave input signal test; (c) relationship between the slope |dV/dt| at the polarity transition point and the maximum Vop.

Fig. 4.  (Color online) (a) I-V curves of the four SBDs in the bridge rectifier; (b) Test loop of the rectifier and the buck system; (c) Output signals under 50 Hz input signals of 3.3 V, 5 V and 10 V; (d) Output signals under different Vin of 5 V with 1 Hz~50 kHz; (e) Filtered output signals with capacitors of different capacitance values; (f) DC output characteristics under various switching duty cycles of MOSFET.

[1]
Higashiwaki M, Wong M H. Beta-gallium oxide material and device technologies. Annu Rev Mater Res, 2024, 54(1): 175 doi: 10.1146/annurev-matsci-080921-104058
[2]
Ahmadi E, Oshima Y. Materials issues and devices of α- and β-Ga2O3. J Appl Phys, 2019, 126(16): 160901 doi: 10.1063/1.5123213
[3]
Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100: 013504 doi: 10.1063/1.3674287
[4]
Al-Ahmadi N A. Metal oxide semiconductor-based Schottky diodes: A review of recent advances. Mater Res Express, 2020, 7(3): 032001 doi: 10.1088/2053-1591/ab7a60
[5]
Kim M, Seo J H, Singisetti U, et al. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond. J Mater Chem C, 2017, 5(33): 8338 doi: 10.1039/C7TC02221B
[6]
Wilhelmi F, Komatsu Y, Yamaguchi S, et al. Switching properties of 600 V Ga2O3 diodes with different chip sizes and thicknesses. IEEE Trans Power Electron, 2023, 38(7): 8406 doi: 10.1109/TPEL.2023.3260023
[7]
Jahdi S, Kumar A S, Deakin M, et al. β-Ga2O3 in power electronics converters: Opportunities & challenges. IEEE Open J Power Electron, 2024, 5: 554 doi: 10.1109/OJPEL.2024.3387076
[8]
Taboada Vasquez J M, Li X H. A review of vertical Ga2O3 diodes: From fabrication to performance optimization and future outlooks. Phys Status Solidi B, 2025, 262(8): 2400635
[9]
Dwari S, Parsa L. An efficient AC–DC step-up converter for low-voltage energy harvesting. IEEE Trans Power Electron, 2010, 25(8): 2188 doi: 10.1109/TPEL.2010.2044192
[10]
Mansouri M, Kaboli S, Selvaraj J, et al. A review of single phase power factor correction A. C.-D. C. converters. 2013 IEEE Conference on Clean Energy and Technology (CEAT), 2013: 389
[11]
Gabriel K, Fayrouz H, Nessakh B, et al. 2.45GHz low-power diode bridge rectifier design. 2023 International Conference on Microelectronics (ICM), 2023: 979-8-3 doi: 10.1109/ICM60448.2023.10378938
[12]
Zhou K, He Q M, Jian G Z, et al. A unified hybrid compact model of β-Ga2O3 Schottky barrier diodes for mixer and rectifier applications. Sci China Inf Sci, 2021, 64(11): 219403 doi: 10.1007/s11432-021-3224-2
[13]
Hong W, Zhang C, Zhang F, et al. Performance improvement of β-Ga2O3 SBD-based rectifier with embedded microchannels in ceramic substrate. Sci China Inf Sci, 2024, 67(5): 159404 doi: 10.1007/s11432-024-3992-8
[14]
Chen H F, Zhang Y D, Sun X X, et al. Solar-blind UV light-modulated β-Ga2O3 full-wave bridge rectifier. J Semicond, 2026, 47: 012301 doi: 10.1088/1674-4926/25040027
[15]
Kaur D, Rakhi, Vashishtha P, et al. Surface nanopatterning of amorphous gallium oxide thin film for enhanced solar-blind photodetection. Nanotechnology, 2022, 33, 375302 doi: 10.1088/1361-6528/ac76d3
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 139 Times PDF downloads: 24 Times Cited by: 0 Times

    History

    Received: 11 October 2025 Revised: 06 December 2025 Online: Accepted Manuscript: 30 December 2025Uncorrected proof: 31 December 2025

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Haifeng Chen, Yuduo Zhang, Xiexin Sun, Xuyang Liu, Chunling Chen, Xiangtai Liu, Jia Zhang, Yahan Zhu. Ultrathin amorphous-Ga2O3 vertical SBD-based bridge rectifier and its hybrid buck system[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25100008 ****H F Chen, Y D Zhang, X X Sun, X Y Liu, C L Chen, X T Liu, J Zhang, and Y H Zhu, Ultrathin amorphous-Ga2O3 vertical SBD-based bridge rectifier and its hybrid buck system[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25100008
      Citation:
      Haifeng Chen, Yuduo Zhang, Xiexin Sun, Xuyang Liu, Chunling Chen, Xiangtai Liu, Jia Zhang, Yahan Zhu. Ultrathin amorphous-Ga2O3 vertical SBD-based bridge rectifier and its hybrid buck system[J]. Journal of Semiconductors, 2025, In Press. doi: 10.1088/1674-4926/25100008 ****
      H F Chen, Y D Zhang, X X Sun, X Y Liu, C L Chen, X T Liu, J Zhang, and Y H Zhu, Ultrathin amorphous-Ga2O3 vertical SBD-based bridge rectifier and its hybrid buck system[J]. J. Semicond., 2025, accepted doi: 10.1088/1674-4926/25100008

      Ultrathin amorphous-Ga2O3 vertical SBD-based bridge rectifier and its hybrid buck system

      DOI: 10.1088/1674-4926/25100008
      CSTR: 32376.14.1674-4926.25100008
      More Information
      • Haifeng Chen received the Ph.D. degree from Xidian University in 2008. He is currently a Professor at the Xi’an University of Posts and Telecommunications. His research interests focus on Ga2O3 material and devices
      • Yuduo Zhang received his BS degree from Xi’an University of Posts and Telecommunications in 2023. He is currently a Master's student at Xi’an University of Posts and telecommunications. His research focuses on Ga2O3 devices
      • Xiexin Sun is currently pursuing a master's degree at Xi'an University of Posts and Telecommunications. He is currently a first-year student in the School of Electronic Engineering at Xi'an University of Posts and Telecommunications. His research interests lie in Ga2O3 devices and DC–DC circuits
      • Corresponding author: chenhaifeng@xupt.edu.cn
      • Received Date: 2025-10-11
      • Revised Date: 2025-12-06
      • Available Online: 2025-12-30

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return