REVIEWS

Recent progress of SiC UV single photon counting avalanche photodiodes

Linlin Su, Dong Zhou, Hai Lu, Rong Zhang and Youdou Zheng

+ Author Affiliations

 Corresponding author: Hai Lu, hailu@nju.edu.cn

PDF

Turn off MathJax

Abstract: 4H-SiC single photon counting avalanche photodiodes (SPADs) are prior devices for weak ultraviolet (UV) signal detection with the advantages of small size, low leakage current, high avalanche multiplication gain, and high quantum efficiency, which benefit from the large bandgap energy, high carrier drift velocity and excellent physical stability of 4H-SiC semiconductor material. UV detectors are widely used in many key applications, such as missile plume detection, corona discharge, UV astronomy, and biological and chemical agent detection. In this paper, we will describe basic concepts and review recent results on device design, process development, and basic characterizations of 4H-SiC avalanche photodiodes. Several promising device structures and uniformity of avalanche multiplication are discussed, which are important for achieving high performance of 4H-SiC UV SPADs.

Key words: SiCavalanche photodiodessingle photon countingultraviolet detection



[1]
Razeghi M. Short-wavelength solar-blind detectors-Status, prospects, and markets. Proc IEEE, 2002, 90(6), 1006 doi: 10.1109/JPROC.2002.1021565
[2]
Campbell J C. Recent advances in avalanche photodiodes. J Lightwave Technol, 2016, 34(2), 278 doi: 10.1109/JLT.2015.2453092
[3]
Wang Y, Qian Y, Kong X. Photon counting based on solar-blind ultraviolet intensified complementary metal–oxide–semiconductor (ICMOS) for corona detection. IEEE Photonics J, 2018, 10(6), 1 doi: 10.1109/jphot.2018.2876514
[4]
Li B, Jiang W, Liang Y. Solar-blinded detector by UV radiation from missile plume. Aerosp Electron Warf, 2006, 22(06), 7
[5]
Chen H, Liu K, Hu L, et al. New concept ultraviolet photodetectors. Mater Today, 2015, 18(9), 493 doi: 10.1016/j.mattod.2015.06.001
[6]
Zamora D, Torres A. Method for outlier detection: a tool to assess the consistency between laboratory data and ultraviolet-visible absorbance spectra in wastewater samples. Water Sci Technol, 2014, 69(11), 2305 doi: 10.2166/wst.2014.139
[7]
Kumamoto Y, Fujita K, Smith N I, et al. Deep-UV biological imaging by lanthanide ion molecular protection. Biomed Opt Express, 2016, 7(1), 158 doi: 10.1364/BOE.7.000158
[8]
Razeghi M. Deep ultraviolet light-emitting diodes and photodetectors for UV communications. Proc SPIE, 2005, 5729, 30 doi: 10.1117/12.590880
[9]
Jackson J C, Phelan D, Morrison A P, et al. Toward integrated single-photon-counting microarrays. Opt Eng, 2002, 42(1), 112 doi: 10.1117/1.1524608
[10]
Isoshima T, Isojima Y, Hakomori K, et al. Ultrahigh sensitivity single-photon detector using a Si avalanche photodiode for the measurement of ultraweak biochemiluminescence. Rev Sci Instrum, 1995, 66(4), 2922 doi: 10.1063/1.1145578
[11]
Munoz E, Monroy E, Pau J L, et al. III nitrides and UV detection. J Phys-Condens Mat, 2001, 13(32), 7115 doi: 10.1088/0953-8984/13/32/316
[12]
Pau J L, Mcclintock R, Minder K, et al. Geiger-mode operation of back-illuminated GaN avalanche photodiodes. Appl Phys Lett, 2007, 91(4), 41104 doi: 10.1063/1.2759980
[13]
Roschke M, Schwierz F. Electron mobility models for 4H, 6H, and 3C SiC. IEEE Trans Electron Devices, 2001, 48(7), 1442 doi: 10.1109/16.930664
[14]
Pearton S J, Zolper J C, Shul R J, et al. GaN: Processing, defects, and devices. J Appl Phys, 1999, 86(1), 1 doi: 10.1063/1.371145
[15]
Monroy E, Omn S F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond Sci Tech, 2003, 18(4), R33 doi: 10.1088/0268-1242/18/4/201
[16]
Powell A R, Rowland L B. SiC materials-progress, status, and potential roadblocks. Proc IEEE, 2002, 90(6), 942 doi: 10.1109/JPROC.2002.1021560
[17]
Yan F, Luo Y, Zhao J H, et al. 4H-SiC visible bling UV avalanche photodiode. Electron Lett, 1999, 35(11), 929 doi: 10.1049/el:19990641
[18]
Xin X, Yan F, Yan F, et al. Demonstration of 4H-SiC UV single photon counting avalanche photodiode. Electron Lett, 2005, 41(4), 212 doi: 10.1049/el:20057320
[19]
Beck A L, Karve G, Wang S, et al. Geiger mode operation of ultraviolet 4H-SiC avalanche photodiodes. IEEE Photon Technol Lett, 2005, 17(7), 1507 doi: 10.1109/LPT.2005.848399
[20]
Shaw G A, Siegel A M, Model J, et al. Deep UV photon-counting detectors and applications. Proc SPIE, 2009, 7320(73200J), 1 doi: 10.1117/12.820825
[21]
Beck A L, Guo X, Liu H, et al. Low dark count rate 4H-SiC Geiger mode avalanche photodiodes operated under gated quenching at 325 nm. Proc SPIE, 2006, 6372, 63720O-1 doi: 10.1117/12.685417
[22]
Li L, Zhou D, Lu H, et al. 4H-SiC avalanche photodiode linear array operating in Geiger Mode. IEEE Photonics J, 2017, 9(5), 6804207 doi: 10.1109/JPHOT.2017.2750686
[23]
Restelli A, Rech I, Maccagnani P, et al. Monolithic silicon matrix detector with 50 μm photon counting pixels. J Mod Optic, 2007, 54(2/3), 213 doi: 10.1080/09500340600790121
[24]
Cicek E, Vashaei Z, Mcclintock R, et al. Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates. Appl Phys Lett, 2010, 96(26), 261107 doi: 10.1063/1.3457783
[25]
Bai X, Liu H, Mcintosh D C, et al. High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes. IEEE J Quantum Elect, 2009, 45(3), 300 doi: 10.1109/JQE.2009.2013093
[26]
Vert A, Soloviev S, Sandvik P. SiC avalanche photodiodes and photomultipliers for ultraviolet and solar-blind light detection. Phys Status Solidi A, 2009, 206(10), 2468 doi: 10.1002/pssa.200925118
[27]
Bai X, Mcintosh D, Liu H, et al. Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes. IEEE Photon Technol Lett, 2007, 19(22), 1822 doi: 10.1109/LPT.2007.906830
[28]
Li L, Zhou D, Liu F, et al. High fill-factor 4H-SiC avalanche photodiodes with partial trench isolation. IEEE Photon Technol Lett, 2016, 28(22), 2526 doi: 10.1109/LPT.2016.2602320
[29]
Zhou D, Liu F, Lu H, et al. High-temperature single photon detection performance of 4H-SiC avalanche photodiodes. IEEE Photon Technol Lett, 2014, 26(11), 1136 doi: 10.1109/LPT.2014.2316793
[30]
Kimoto T. Material science and device physics in SiC technology for high-voltage power devices. Jpn J Appl Phys, 2015, 54, 040103 doi: 10.7567/JJAP.54.040103
[31]
Katsuno T, Watanabe Y, Fujiwara H, et al. Analysis of surface morphology at leakage current sources of 4H-SiC Schottky barrier diodes. Appl Phys Lett, 2011, 98(22), 222111 doi: 10.1063/1.3597413
[32]
Usami S, Ando Y, Tanaka A, et al. Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate. Appl Phys Lett, 2018, 112(18), 182106 doi: 10.1063/1.5024704
[33]
Yang Y, Chen Z. Identification of SiC polytypes by etched Si-face morphology. Mater Sci Semicond Proc, 2009, 12(3), 113 doi: 10.1016/j.mssp.2009.08.004
[34]
Wahab Q, Ellison A, Henry A, et al. Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H-SiC Schottky diodes. Appl Phys Lett, 2000, 76(19), 2725 doi: 10.1063/1.126456
[35]
Chen B, Matsuhata H, Sekiguchi T, et al. Surface defects and accompanying imperfections in 4H-SiC: Optical, structural and electrical characterization. Acta Mater, 2012, 60(1), 51 doi: 10.1016/j.actamat.2011.09.010
[36]
Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl Phys Lett, 2006, 89(15), 151109 doi: 10.1063/1.2360235
[37]
Ji X, Liu B, Xu Y, et al. Deep-level traps induced dark currents in extended wavelength InxGa1− xAs/InP photodetector. J Appl Phys, 2013, 114(22), 224502 doi: 10.1063/1.4838041
[38]
Hurkx G A M, Klaassen D B M, Knuvers M P G. A new recombination model for device simulation including tunneling. IEEE Trans Electron Dev, 1992, 39(2), 331 doi: 10.1109/16.121690
[39]
Vilà A, Trenado J, Arbat A, et al. Characterization and simulation of avalanche photodiodes for next-generation colliders. Sens Actuators A, 2011, 172(1), 181 doi: 10.1016/j.sna.2011.05.011
[40]
Stephen R, Forrest. Performance of InxGa1− x AsyP1– y photodiodes with dark current limited by diffusion, generation recombination, and tunneling. IEEE J Quantum Elect, 1981, 17(2), 217 doi: 10.1109/JQE.1981.1071060
[41]
Yang S, Zhou D, Cai X, et al. Analysis of dark count mechanisms of 4H-SiC ultraviolet avalanche photodiodes working in Geiger Mode. IEEE Trans Electron Devices, 2017, 64(11), 4532 doi: 10.1109/TED.2017.2753839
[42]
Beck A L, Yang B, Guo X, et al. Edge breakdown in 4H-SiC avalanche photodiodes. IEEE J Quantum Electron, 2004, 40(3), 321 doi: 10.1109/JQE.2003.823033
[43]
Davies R L, Gentry F E. Control of electric field at surface of P–N junction. IEEE Trans Electron Devices, 1964, 11(7), 313 doi: 10.1109/T-ED.1964.15335
[44]
Liu H, Zheng X, Zhou Q, et al. Double mesa sidewall silicon carbide avalanche photodiode. IEEE J Quantum Elect, 2009, 45(12), 1524 doi: 10.1109/JQE.2009.2022046
[45]
Guo X, Beck A L, Li X, et al. Study of reverse dark current in 4H-SiC avalanche photodiodes. IEEE J Quantum Elect, 2005, 41(4), 562 doi: 10.1109/JQE.2005.843616
[46]
Yamaguchi K, Teshima T, Mizuta H. Numerical analysis of an anomalous current assisted by locally generated deep traps in pn junctions. IEEE Trans Electron Devices, 1999, 46(6), 1159 doi: 10.1109/16.766878
[47]
Shen S, Zhang Y, Yoo D, et al. Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD. IEEE Photon Technol Lett, 2007, 19(21), 1744 doi: 10.1109/LPT.2007.906052
[48]
Yang S, Zhou D, Xu W, et al. 4H-SiC ultraviolet avalanche photodiodes with small gain slope and enhanced fill factor. IEEE Photonics J, 2017, 9(2), 1 doi: 10.1109/jphot.2017.2679021
[49]
Liu H, Mcintosh D, Bai X, et al. 4H-SiC PIN recessed-window avalanche photodiode with high quantum efficiency. IEEE Photon Technol Lett, 2008, 20(17–20), 1551 doi: 10.1109/lpt.2008.928823
[50]
Cai X, Zhou D, Yang S, et al. 4H-SiC SACM avalanche photodiode with low breakdown voltage and high UV detection efficiency. IEEE Photonics J, 2016, 8(5), 1 doi: 10.1109/jphot.2016.2614499
[51]
Cha H, Soloviev S, Zelakiewicz S, et al. Temperature dependent characteristics of nonreach-through 4H-SiC separate absorption and multiplication APDs for UV detection. IEEE Sens J, 2008, 8(3), 233 doi: 10.1109/JSEN.2007.913033
[52]
Cha H, Soloviev S, Dunne G, et al. Comparison of 4H-SiC separate absorption and multiplication region avalanche photodiodes structures for UV detection. Proc 5th IEEE Conf Sensors, 2006, 5, 14
[53]
Vert A, Soloviev S, Fronheiser J, et al. Solar-blind 4H-SiC single-photon avalanche diode operating in Geiger Mode. IEEE Photon Technol Lett, 2008, 20(18), 1587 doi: 10.1109/LPT.2008.928852
[54]
Soloviev S I, Vert A V, Fronheiser J, et al. Solar-blind 4H-SiC avalanche photodiodes. Mater Sci Forum, 2009, 615–617, 873 doi: 10.4028/www.scientific.net/MSF.615-617.873
[55]
Sung W, Huang A Q, Baliga B J. Bevel junction termination extension-a new edge termination technique for 4H-SiC high-voltage devices. IEEE Electron Device Lett, 2015, 36(6), 594 doi: 10.1109/LED.2015.2427654
[56]
Zhang Q, Callanan R, Das M K, et al. SiC power devices for microgrids. IEEE Trans Power Electron, 2010, 25(12), 2889 doi: 10.1109/TPEL.2010.2079956
[57]
Yang S, Zhou D, Lu H, et al. 4H-SiC p–i–n ultraviolet avalanche photodiodes obtained by Al implantation. IEEE Photon Technol Lett, 2016, 28(11), 1185 doi: 10.1109/LPT.2016.2535335
[58]
Yang S, Zhou D, Lu H, et al. High-performance 4H-SiC p–i–n ultraviolet photodiode with p layer formed by Al implantation. IEEE Photon Technol Lett, 2016, 28(11), 1189 doi: 10.1109/LPT.2016.2535407
[59]
Sciuto A, Mazzillo M, Lenzi P, et al. Fully planar 4H-SiC avalanche photodiode with low breakdown voltage. IEEE Sens J, 2017, 17(14), 4460 doi: 10.1109/JSEN.2017.2711643
[60]
Guo X Y, Beck A L, Campbell J C, et al. Spatial nonuniformity of 4H-SiC avalanche photodiodes at high gain. IEEE J Quantum Elect, 2005, 41(10), 1213 doi: 10.1109/JQE.2005.854132
[61]
Cai X, Wu C, Lu H, et al. Single photon counting spatial uniformity of 4H-SiC APD characterized by SNOM-based mapping system. IEEE Photon Technol Lett, 2017, 29(19), 1603 doi: 10.1109/LPT.2017.2735625
[62]
Banc C, Bano E, Ouisse T, et al. Photon emission analysis of defect-free 4H-SiC pn diodes in avalanche regime. Mater Sci Forum, 2002, 389–393, 1293 doi: 10.4028/www.scientific.net/MSF.389-393.1293
[63]
Soloviev S I, Sandvik P M, Vertiatchikh A, et al. Observation of luminescence from defects in 4H-SiC APDs operating in avalanche breakdown. Mater Sci Forum, 2008, 600–603, 1211 doi: 10.4028/www.scientific.net/MSF.600-603.1211
[64]
Su L, Cai X, Lu H, et al. Spatial non-uniform hot carrier luminescence from 4H-SiC p–i–n avalanche photodiodes. IEEE Photon Technol Lett, 2019, 31(6), 447 doi: 10.1109/LPT.2019.2897742
[65]
Hatakeyama T, Watanabe T, Shinohe T, et al. Impact ionization coefficients of 4H silicon carbide. Appl Phys Lett, 2004, 85(8), 1380 doi: 10.1063/1.1784520
[66]
Bellotti E, Nilsson H, Brennan K F, et al. Monte Carlo calculation of hole initiated impact ionization in 4H phase SiC. J Appl Phys, 2000, 87(8), 3864 doi: 10.1063/1.372426
[67]
Hjelm M, Nilsson H, Martinez A, et al. Monte Carlo study of high-field carrier transport in 4H-SiC including band-to-band tunneling. J Appl Phys, 2003, 93(2), 1099 doi: 10.1063/1.1530712
Fig. 1.  (Color online) A schematic of various applications for UV detectors.

Fig. 2.  (Color online) Schematic of the (a) basic device structure and (b) avalanche multiplication mechanism of a working APD.

Fig. 3.  (Color online) A schematic of gain–voltage curve of an APD working in either linear mode or Geiger mode.

Fig. 4.  The process of impact ionization in (a) linear mode and (b) Geiger mode.

Fig. 5.  (Color online) Area normalized DCR or DCP versus SPDE for SiC[20, 2529], GaN[12, 24] and Si APDs[23].

Fig. 6.  (Color online) Typical scanning electron microscopy image from SiC epitaxial layer after molten KOH etching.

Fig. 7.  (Color online) (a) IV and (b) DCR versus SPDE curves of four 4H-SiC APDs. From device A to D, EPDs in device active layers increase.

Fig. 8.  (Color online) The cross-sectional view of a SiC APD with bevel edge termination.

Fig. 9.  (Color online) The simulated 2D electric field distribution of (a) a vertical mesa SiC APD, and (b) a beveled mesa SiC APD under avalanche breakdown voltage. The inset shows the 1-D electrical field profile along the black line marked in the 2-D electrical field profile.

Fig. 10.  (Color online) Cross-sectional view of SiC APDs with a combined partial trench termination and deep trench isolation.

Fig. 11.  (Color online) The simulated 2-D electric field distribution of a partial trench termination APD under avalanche breakdown voltage. The inset shows the 1-D electrical field profile along the black line marked in the 2-D electrical field profile.

Fig. 12.  (Color online) The room temperature IV and gain–voltage characteristics of a 4H-SiC APD.

Fig. 13.  (Color online) Spectral response characteristics of a 4H-SiC APD at different bias.

Fig. 14.  Typical DCR versus SPDE curve of a 4H-SiC APD at room temperature.

Fig. 15.  (Color online) Variation of DCR and SPDE as a function of temperatures for a SiC APD.

Fig. 16.  (Color online) (a) Photocurrent of the three SiC APDs under same illumination condition at avalanche regime. (Inset) Top-view images of the three SiC APDs, which are denoted as APD 1, 2 and 3 respectively. (b) DCR-voltage and PCR-voltage characteristics of the three SiC APDs.

Fig. 17.  (Color online) Cross-sectional view of the recessed-window SiC APD.

Fig. 18.  (Color online) (a) Cross-sectional view of the SACM SiC APD. (b) Electric field profiles of SiC SACM APDs with reach-through structure and non-reach-through structure.

Fig. 19.  (Color online) The room temperature spectral response characteristics of the 4H-SiC SACM APD measured at different bias. Inset: spectral response characteristics plotted in linear scale.

Fig. 20.  (Color online) IV characteristics of 4H-SiC APDs formed by Al implantation.

Fig. 21.  (Color online) Capacitance-frequency characteristics of the SiC APDs formed by Al implantation as well as the SiC APDs fully formed by epitaxial growth.

Fig. 22.  Real time DCR and PCR spectra of a SiC APD at the same over-bias.

Fig. 23.  (Color online) The SPC mapping profiles of a SiC APD at different over-bias.

Fig. 24.  Hot carrier luminescence images of a SiC APD at different avalanche currents.

Fig. 25.  (Color online) (a) Schematic of a 4H-SiC wafer with 4° offcut angle and the electrical field direction of the fabricated SiC APD. (b) Schematic of carrier drift path within the 4H-SiC APD.

Table 1.   Comparison of physical properties for various semiconductors[1316].

Parameter 4H-SiC 6H-SiC 3C-SiC GaN Si
Bandgap (eV) 3.26 3 2.4 3.39 1.12
Saturation electron velocity (107 cm/s) 2 2 2 2.5 1
Electron mobility (cm2/(V·s)) 950 600 900 1000 1400
Hole mobility (cm2/(V·s)) 120 75 50 30 600
Dielectric constant (Å) 9.7 10 9.7 8.9 11.4
Thermal conductivity (W/(cm·K)) 4.9 4.9 3.2 1.5 1.5
DownLoad: CSV
[1]
Razeghi M. Short-wavelength solar-blind detectors-Status, prospects, and markets. Proc IEEE, 2002, 90(6), 1006 doi: 10.1109/JPROC.2002.1021565
[2]
Campbell J C. Recent advances in avalanche photodiodes. J Lightwave Technol, 2016, 34(2), 278 doi: 10.1109/JLT.2015.2453092
[3]
Wang Y, Qian Y, Kong X. Photon counting based on solar-blind ultraviolet intensified complementary metal–oxide–semiconductor (ICMOS) for corona detection. IEEE Photonics J, 2018, 10(6), 1 doi: 10.1109/jphot.2018.2876514
[4]
Li B, Jiang W, Liang Y. Solar-blinded detector by UV radiation from missile plume. Aerosp Electron Warf, 2006, 22(06), 7
[5]
Chen H, Liu K, Hu L, et al. New concept ultraviolet photodetectors. Mater Today, 2015, 18(9), 493 doi: 10.1016/j.mattod.2015.06.001
[6]
Zamora D, Torres A. Method for outlier detection: a tool to assess the consistency between laboratory data and ultraviolet-visible absorbance spectra in wastewater samples. Water Sci Technol, 2014, 69(11), 2305 doi: 10.2166/wst.2014.139
[7]
Kumamoto Y, Fujita K, Smith N I, et al. Deep-UV biological imaging by lanthanide ion molecular protection. Biomed Opt Express, 2016, 7(1), 158 doi: 10.1364/BOE.7.000158
[8]
Razeghi M. Deep ultraviolet light-emitting diodes and photodetectors for UV communications. Proc SPIE, 2005, 5729, 30 doi: 10.1117/12.590880
[9]
Jackson J C, Phelan D, Morrison A P, et al. Toward integrated single-photon-counting microarrays. Opt Eng, 2002, 42(1), 112 doi: 10.1117/1.1524608
[10]
Isoshima T, Isojima Y, Hakomori K, et al. Ultrahigh sensitivity single-photon detector using a Si avalanche photodiode for the measurement of ultraweak biochemiluminescence. Rev Sci Instrum, 1995, 66(4), 2922 doi: 10.1063/1.1145578
[11]
Munoz E, Monroy E, Pau J L, et al. III nitrides and UV detection. J Phys-Condens Mat, 2001, 13(32), 7115 doi: 10.1088/0953-8984/13/32/316
[12]
Pau J L, Mcclintock R, Minder K, et al. Geiger-mode operation of back-illuminated GaN avalanche photodiodes. Appl Phys Lett, 2007, 91(4), 41104 doi: 10.1063/1.2759980
[13]
Roschke M, Schwierz F. Electron mobility models for 4H, 6H, and 3C SiC. IEEE Trans Electron Devices, 2001, 48(7), 1442 doi: 10.1109/16.930664
[14]
Pearton S J, Zolper J C, Shul R J, et al. GaN: Processing, defects, and devices. J Appl Phys, 1999, 86(1), 1 doi: 10.1063/1.371145
[15]
Monroy E, Omn S F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond Sci Tech, 2003, 18(4), R33 doi: 10.1088/0268-1242/18/4/201
[16]
Powell A R, Rowland L B. SiC materials-progress, status, and potential roadblocks. Proc IEEE, 2002, 90(6), 942 doi: 10.1109/JPROC.2002.1021560
[17]
Yan F, Luo Y, Zhao J H, et al. 4H-SiC visible bling UV avalanche photodiode. Electron Lett, 1999, 35(11), 929 doi: 10.1049/el:19990641
[18]
Xin X, Yan F, Yan F, et al. Demonstration of 4H-SiC UV single photon counting avalanche photodiode. Electron Lett, 2005, 41(4), 212 doi: 10.1049/el:20057320
[19]
Beck A L, Karve G, Wang S, et al. Geiger mode operation of ultraviolet 4H-SiC avalanche photodiodes. IEEE Photon Technol Lett, 2005, 17(7), 1507 doi: 10.1109/LPT.2005.848399
[20]
Shaw G A, Siegel A M, Model J, et al. Deep UV photon-counting detectors and applications. Proc SPIE, 2009, 7320(73200J), 1 doi: 10.1117/12.820825
[21]
Beck A L, Guo X, Liu H, et al. Low dark count rate 4H-SiC Geiger mode avalanche photodiodes operated under gated quenching at 325 nm. Proc SPIE, 2006, 6372, 63720O-1 doi: 10.1117/12.685417
[22]
Li L, Zhou D, Lu H, et al. 4H-SiC avalanche photodiode linear array operating in Geiger Mode. IEEE Photonics J, 2017, 9(5), 6804207 doi: 10.1109/JPHOT.2017.2750686
[23]
Restelli A, Rech I, Maccagnani P, et al. Monolithic silicon matrix detector with 50 μm photon counting pixels. J Mod Optic, 2007, 54(2/3), 213 doi: 10.1080/09500340600790121
[24]
Cicek E, Vashaei Z, Mcclintock R, et al. Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates. Appl Phys Lett, 2010, 96(26), 261107 doi: 10.1063/1.3457783
[25]
Bai X, Liu H, Mcintosh D C, et al. High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes. IEEE J Quantum Elect, 2009, 45(3), 300 doi: 10.1109/JQE.2009.2013093
[26]
Vert A, Soloviev S, Sandvik P. SiC avalanche photodiodes and photomultipliers for ultraviolet and solar-blind light detection. Phys Status Solidi A, 2009, 206(10), 2468 doi: 10.1002/pssa.200925118
[27]
Bai X, Mcintosh D, Liu H, et al. Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes. IEEE Photon Technol Lett, 2007, 19(22), 1822 doi: 10.1109/LPT.2007.906830
[28]
Li L, Zhou D, Liu F, et al. High fill-factor 4H-SiC avalanche photodiodes with partial trench isolation. IEEE Photon Technol Lett, 2016, 28(22), 2526 doi: 10.1109/LPT.2016.2602320
[29]
Zhou D, Liu F, Lu H, et al. High-temperature single photon detection performance of 4H-SiC avalanche photodiodes. IEEE Photon Technol Lett, 2014, 26(11), 1136 doi: 10.1109/LPT.2014.2316793
[30]
Kimoto T. Material science and device physics in SiC technology for high-voltage power devices. Jpn J Appl Phys, 2015, 54, 040103 doi: 10.7567/JJAP.54.040103
[31]
Katsuno T, Watanabe Y, Fujiwara H, et al. Analysis of surface morphology at leakage current sources of 4H-SiC Schottky barrier diodes. Appl Phys Lett, 2011, 98(22), 222111 doi: 10.1063/1.3597413
[32]
Usami S, Ando Y, Tanaka A, et al. Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate. Appl Phys Lett, 2018, 112(18), 182106 doi: 10.1063/1.5024704
[33]
Yang Y, Chen Z. Identification of SiC polytypes by etched Si-face morphology. Mater Sci Semicond Proc, 2009, 12(3), 113 doi: 10.1016/j.mssp.2009.08.004
[34]
Wahab Q, Ellison A, Henry A, et al. Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H-SiC Schottky diodes. Appl Phys Lett, 2000, 76(19), 2725 doi: 10.1063/1.126456
[35]
Chen B, Matsuhata H, Sekiguchi T, et al. Surface defects and accompanying imperfections in 4H-SiC: Optical, structural and electrical characterization. Acta Mater, 2012, 60(1), 51 doi: 10.1016/j.actamat.2011.09.010
[36]
Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl Phys Lett, 2006, 89(15), 151109 doi: 10.1063/1.2360235
[37]
Ji X, Liu B, Xu Y, et al. Deep-level traps induced dark currents in extended wavelength InxGa1− xAs/InP photodetector. J Appl Phys, 2013, 114(22), 224502 doi: 10.1063/1.4838041
[38]
Hurkx G A M, Klaassen D B M, Knuvers M P G. A new recombination model for device simulation including tunneling. IEEE Trans Electron Dev, 1992, 39(2), 331 doi: 10.1109/16.121690
[39]
Vilà A, Trenado J, Arbat A, et al. Characterization and simulation of avalanche photodiodes for next-generation colliders. Sens Actuators A, 2011, 172(1), 181 doi: 10.1016/j.sna.2011.05.011
[40]
Stephen R, Forrest. Performance of InxGa1− x AsyP1– y photodiodes with dark current limited by diffusion, generation recombination, and tunneling. IEEE J Quantum Elect, 1981, 17(2), 217 doi: 10.1109/JQE.1981.1071060
[41]
Yang S, Zhou D, Cai X, et al. Analysis of dark count mechanisms of 4H-SiC ultraviolet avalanche photodiodes working in Geiger Mode. IEEE Trans Electron Devices, 2017, 64(11), 4532 doi: 10.1109/TED.2017.2753839
[42]
Beck A L, Yang B, Guo X, et al. Edge breakdown in 4H-SiC avalanche photodiodes. IEEE J Quantum Electron, 2004, 40(3), 321 doi: 10.1109/JQE.2003.823033
[43]
Davies R L, Gentry F E. Control of electric field at surface of P–N junction. IEEE Trans Electron Devices, 1964, 11(7), 313 doi: 10.1109/T-ED.1964.15335
[44]
Liu H, Zheng X, Zhou Q, et al. Double mesa sidewall silicon carbide avalanche photodiode. IEEE J Quantum Elect, 2009, 45(12), 1524 doi: 10.1109/JQE.2009.2022046
[45]
Guo X, Beck A L, Li X, et al. Study of reverse dark current in 4H-SiC avalanche photodiodes. IEEE J Quantum Elect, 2005, 41(4), 562 doi: 10.1109/JQE.2005.843616
[46]
Yamaguchi K, Teshima T, Mizuta H. Numerical analysis of an anomalous current assisted by locally generated deep traps in pn junctions. IEEE Trans Electron Devices, 1999, 46(6), 1159 doi: 10.1109/16.766878
[47]
Shen S, Zhang Y, Yoo D, et al. Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD. IEEE Photon Technol Lett, 2007, 19(21), 1744 doi: 10.1109/LPT.2007.906052
[48]
Yang S, Zhou D, Xu W, et al. 4H-SiC ultraviolet avalanche photodiodes with small gain slope and enhanced fill factor. IEEE Photonics J, 2017, 9(2), 1 doi: 10.1109/jphot.2017.2679021
[49]
Liu H, Mcintosh D, Bai X, et al. 4H-SiC PIN recessed-window avalanche photodiode with high quantum efficiency. IEEE Photon Technol Lett, 2008, 20(17–20), 1551 doi: 10.1109/lpt.2008.928823
[50]
Cai X, Zhou D, Yang S, et al. 4H-SiC SACM avalanche photodiode with low breakdown voltage and high UV detection efficiency. IEEE Photonics J, 2016, 8(5), 1 doi: 10.1109/jphot.2016.2614499
[51]
Cha H, Soloviev S, Zelakiewicz S, et al. Temperature dependent characteristics of nonreach-through 4H-SiC separate absorption and multiplication APDs for UV detection. IEEE Sens J, 2008, 8(3), 233 doi: 10.1109/JSEN.2007.913033
[52]
Cha H, Soloviev S, Dunne G, et al. Comparison of 4H-SiC separate absorption and multiplication region avalanche photodiodes structures for UV detection. Proc 5th IEEE Conf Sensors, 2006, 5, 14
[53]
Vert A, Soloviev S, Fronheiser J, et al. Solar-blind 4H-SiC single-photon avalanche diode operating in Geiger Mode. IEEE Photon Technol Lett, 2008, 20(18), 1587 doi: 10.1109/LPT.2008.928852
[54]
Soloviev S I, Vert A V, Fronheiser J, et al. Solar-blind 4H-SiC avalanche photodiodes. Mater Sci Forum, 2009, 615–617, 873 doi: 10.4028/www.scientific.net/MSF.615-617.873
[55]
Sung W, Huang A Q, Baliga B J. Bevel junction termination extension-a new edge termination technique for 4H-SiC high-voltage devices. IEEE Electron Device Lett, 2015, 36(6), 594 doi: 10.1109/LED.2015.2427654
[56]
Zhang Q, Callanan R, Das M K, et al. SiC power devices for microgrids. IEEE Trans Power Electron, 2010, 25(12), 2889 doi: 10.1109/TPEL.2010.2079956
[57]
Yang S, Zhou D, Lu H, et al. 4H-SiC p–i–n ultraviolet avalanche photodiodes obtained by Al implantation. IEEE Photon Technol Lett, 2016, 28(11), 1185 doi: 10.1109/LPT.2016.2535335
[58]
Yang S, Zhou D, Lu H, et al. High-performance 4H-SiC p–i–n ultraviolet photodiode with p layer formed by Al implantation. IEEE Photon Technol Lett, 2016, 28(11), 1189 doi: 10.1109/LPT.2016.2535407
[59]
Sciuto A, Mazzillo M, Lenzi P, et al. Fully planar 4H-SiC avalanche photodiode with low breakdown voltage. IEEE Sens J, 2017, 17(14), 4460 doi: 10.1109/JSEN.2017.2711643
[60]
Guo X Y, Beck A L, Campbell J C, et al. Spatial nonuniformity of 4H-SiC avalanche photodiodes at high gain. IEEE J Quantum Elect, 2005, 41(10), 1213 doi: 10.1109/JQE.2005.854132
[61]
Cai X, Wu C, Lu H, et al. Single photon counting spatial uniformity of 4H-SiC APD characterized by SNOM-based mapping system. IEEE Photon Technol Lett, 2017, 29(19), 1603 doi: 10.1109/LPT.2017.2735625
[62]
Banc C, Bano E, Ouisse T, et al. Photon emission analysis of defect-free 4H-SiC pn diodes in avalanche regime. Mater Sci Forum, 2002, 389–393, 1293 doi: 10.4028/www.scientific.net/MSF.389-393.1293
[63]
Soloviev S I, Sandvik P M, Vertiatchikh A, et al. Observation of luminescence from defects in 4H-SiC APDs operating in avalanche breakdown. Mater Sci Forum, 2008, 600–603, 1211 doi: 10.4028/www.scientific.net/MSF.600-603.1211
[64]
Su L, Cai X, Lu H, et al. Spatial non-uniform hot carrier luminescence from 4H-SiC p–i–n avalanche photodiodes. IEEE Photon Technol Lett, 2019, 31(6), 447 doi: 10.1109/LPT.2019.2897742
[65]
Hatakeyama T, Watanabe T, Shinohe T, et al. Impact ionization coefficients of 4H silicon carbide. Appl Phys Lett, 2004, 85(8), 1380 doi: 10.1063/1.1784520
[66]
Bellotti E, Nilsson H, Brennan K F, et al. Monte Carlo calculation of hole initiated impact ionization in 4H phase SiC. J Appl Phys, 2000, 87(8), 3864 doi: 10.1063/1.372426
[67]
Hjelm M, Nilsson H, Martinez A, et al. Monte Carlo study of high-field carrier transport in 4H-SiC including band-to-band tunneling. J Appl Phys, 2003, 93(2), 1099 doi: 10.1063/1.1530712
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5278 Times PDF downloads: 175 Times Cited by: 0 Times

    History

    Received: 23 February 2019 Revised: 10 July 2019 Online: Accepted Manuscript: 12 September 2019Uncorrected proof: 18 September 2019Published: 09 December 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Linlin Su, Dong Zhou, Hai Lu, Rong Zhang, Youdou Zheng. Recent progress of SiC UV single photon counting avalanche photodiodes[J]. Journal of Semiconductors, 2019, 40(12): 121802. doi: 10.1088/1674-4926/40/12/121802 L L Su, D Zhou, H Lu, R Zhang, Y D Zheng, Recent progress of SiC UV single photon counting avalanche photodiodes[J]. J. Semicond., 2019, 40(12): 121802. doi: 10.1088/1674-4926/40/12/121802.Export: BibTex EndNote
      Citation:
      Linlin Su, Dong Zhou, Hai Lu, Rong Zhang, Youdou Zheng. Recent progress of SiC UV single photon counting avalanche photodiodes[J]. Journal of Semiconductors, 2019, 40(12): 121802. doi: 10.1088/1674-4926/40/12/121802

      L L Su, D Zhou, H Lu, R Zhang, Y D Zheng, Recent progress of SiC UV single photon counting avalanche photodiodes[J]. J. Semicond., 2019, 40(12): 121802. doi: 10.1088/1674-4926/40/12/121802.
      Export: BibTex EndNote

      Recent progress of SiC UV single photon counting avalanche photodiodes

      doi: 10.1088/1674-4926/40/12/121802
      More Information
      • Corresponding author: Hai Lu, hailu@nju.edu.cn
      • Received Date: 2019-02-23
      • Revised Date: 2019-07-10
      • Published Date: 2019-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return