ARTICLES

Electrically driven uniaxial stress device for tuning in situ semiconductor quantum dot symmetry and exciton emission in cryostat

Hao Chen1, 2, Xiuming Dou1, 2, , Kun Ding1 and Baoquan Sun1, 2,

+ Author Affiliations

 Corresponding author: Xiuming Dou, Email: xmdou04@semi.ac.cn; Baoquan Sun, bqsun@semi.ac.cn

PDF

Turn off MathJax

Abstract: Uniaxial stress is a powerful tool for tuning exciton emitting wavelength, polarization, fine-structure splitting (FSS), and the symmetry of quantum dots (QDs). Here, we present a technique for applying uniaxial stress, which enables us in situ to tune exciton optical properties at low temperature down to 15 K with high tuning precision. The design and operation of the device are described in detail. This technique provides a simple and convenient approach to tune QD structural symmetry, exciton energy and biexciton binding energy. It can be utilized for generating entangled and indistinguishable photons. Moreover, this device can be employed for tuning optical properties of thin film materials at low temperature.

Key words: uniaxial stresselectrically driven devicelow temperaturequantum dotsthin film materials



[1]
Stevenson R M, Hudson A J, Bennett A J, et al. Evolution of entanglement between distinguishable light states. Phys Rev Lett, 2008, 101(17), 170501 doi: 10.1103/PhysRevLett.101.170501
[2]
Gao W B, Fallahi P, Togan E, et al. Observation of entanglement between a quantum dot spin and a single photon. Nature, 2012, 491(7424), 426 doi: 10.1038/nature11573
[3]
Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys, 2015, 87, 347 doi: 10.1103/RevModPhys.87.347
[4]
Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photonics, 2016, 10, 631 doi: 10.1038/nphoton.2016.186
[5]
Delteil A, Sun Z, Gao W B, et al. Generation of heralded entanglement between distant hole spins. Nat Phys, 2016, 12, 218 doi: 10.1038/nphys3605
[6]
Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 2017, 12(11), 1026 doi: 10.1038/nnano.2017.218
[7]
Wang H, Hu H, Chung T H, et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys Rev Lett, 2019, 122(11), 113602 doi: 10.1103/PhysRevLett.122.113602
[8]
Plumhof J D, Trotta R, Rastelli A, et al. Experimental methods of post-growth tuning of the excitonic fine structure splitting in semiconductor quantum dots. Nanoscale Res Lett, 2012, 7(1), 336 doi: 10.1186/1556-276X-7-336
[9]
Bennett A J, Pooley M A, Stevenson R M, et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat Phys, 2010, 6(12), 947 doi: 10.1038/nphys1780
[10]
Ghali M, Ohtani K, Ohno Y, et al. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field. Nat Commun, 2012, 3, 661 doi: 10.1038/ncomms1657
[11]
Trotta R, Zallo E, Ortix C, et al. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. Phys Rev Lett, 2012, 109(14), 147401 doi: 10.1103/PhysRevLett.109.147401
[12]
Wu X F, Wei H, Dou X M, et al. In situ tuning biexciton antibinding-binding transition and fine-structure splitting through hydrostatic pressure in single InGaAs quantum dots. Europhys Lett, 2014, 107(2), 27008 doi: 10.1209/0295-5075/107/27008
[13]
Wang J, Gong M, Guo G C, et al. Eliminating the fine structure splitting of excitons in self-assembled InAs/GaAs quantum dots via combined stresses. Appl Phys Lett, 2012, 101(6), 2513 doi: 10.1063/1.4745188
[14]
Dou X, Sun B, Wang B, et al. Photoluminescence energy and fine structure splitting in single quantum dots by uniaxial stress. Chin Phys Lett, 2008, 25(3), 1120 doi: 10.1088/0256-307X/25/3/085
[15]
Keil R, Zopf M, Chen Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat Commun, 2017, 8, 15501 doi: 10.1038/ncomms15501
[16]
Zhang J, Wildmann J S, Ding F, et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat Commun, 2015, 6, 10067 doi: 10.1038/ncomms10067
[17]
Ding F, Singh R, Plumhof J D, et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. Phys Rev Lett, 2010, 104(6), 067405 doi: 10.1103/PhysRevLett.104.067405
[18]
Desai S B, Seol G, Kang J S, et al. Strain-induced indirect to direct bandgap transition in multi layer WSe2. Nano Lett, 2014, 14(8), 4592 doi: 10.1021/nl501638a
[19]
Conley H J, Wang B, Ziegler J I, et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett, 2013, 13(8), 3626 doi: 10.1021/nl4014748
[20]
Cardona M. Piezo-electroreflectance in Ge, GaAs, and Si. Phys Rev, 1968, 172(3), 816 doi: 10.1103/PhysRev.172.816
[21]
Seidl S, Kroner M, Högele, Alexander, et al. Effect of uniaxial stress on excitons in a self-assembled quantum dot. Appl Phys Lett, 2006, 88(20), 2513 doi: 10.1063/1.2204843
[22]
Gong M, Zhang W, Guo G C, et al. exciton polarization, fine-structure splitting, and the asymmetry of quantum dots under uniaxial stress. Phys Rev Lett, 2011, 106(22), 227401 doi: 10.1103/PhysRevLett.106.227401
[23]
Xiong W, Xu X, Luo J W, et al. fundamental intrinsic lifetimes in semiconductor self-assembled quantum dots. Phys Rev Appl, 2018, 10(4), 044009 doi: 10.1103/PhysRevApplied.10.044009
[24]
Troiani F, Tejedor C. Entangled photon pairs from a quantum-dot cascade decay: The effect of time reordering. Phys Rev B, 2008, 78(15), 155305 doi: 10.1103/PhysRevB.78.155305
Fig. 1.  (Color online) (a) Photograph of a polished metal sheet with a sample on the center, where metal sheet as a flexible substrate of absorbed sample. (b) Photograph of the electrically driven uniaxial stress device fixed on the cold chamber of cryostat.

Fig. 2.  (Color online) (a) PL intensity ratio R2/R1 of ruby as a function of temperature. (b) Ruby PL spectrum at 15 K corresponding a ratio of PL intensity of R2 and R1.

Fig. 3.  (Color online) (a) Stress-dependent spectra of GaAs at 15 K, measured for applied uniaxial tensile stress from zero to 879.5 MPa. (b) PL peak energy as a function of tensile (black solid squares) and release (red solid circles) stresses, respectively.

Fig. 4.  (Color online) (a) PL spectra for X*, X and XX in QD measured under the tensile stress of 0, 104.4, 201.2, 321.7, 391.9, 500.7, 614.2 and 717.6 MPa, respectively. (b) The obtained stress coefficients for X*, X and XX are –20.19, –20.26 and –18.93 μeV/MPa, respectively.

Fig. 5.  (Color online) (a) FSS change of the exciton in single QD as a function of strain applied along (100) and (010) directions, respectively. (b) Charged exciton decay times of single QD as a function of strain applied along (100) and (010) directions, respectively.

Fig. 6.  (Color online) (a)–(d) Stress-dependent spectra of single QD at 15 K. As shown in (b) and (d), PL spectra of the horizontal (red lines) and vertical (black lines) polarized components of exciton and biexciton overlap at the stresses of 491.8 and 960.4 MPa, respectively. At 698.3 MPa as shown in (c), across generation color coincidence for XX and X transition energies is achieved. (e)–(h) Level schemes showing the XX-X cascade emissions accordingly.

Fig. 7.  (Color online) Stress-dependent PL spectra of monolayer MoS2 at 15 K, corresponding motor precession from 0 to 330 000 steps.

[1]
Stevenson R M, Hudson A J, Bennett A J, et al. Evolution of entanglement between distinguishable light states. Phys Rev Lett, 2008, 101(17), 170501 doi: 10.1103/PhysRevLett.101.170501
[2]
Gao W B, Fallahi P, Togan E, et al. Observation of entanglement between a quantum dot spin and a single photon. Nature, 2012, 491(7424), 426 doi: 10.1038/nature11573
[3]
Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys, 2015, 87, 347 doi: 10.1103/RevModPhys.87.347
[4]
Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photonics, 2016, 10, 631 doi: 10.1038/nphoton.2016.186
[5]
Delteil A, Sun Z, Gao W B, et al. Generation of heralded entanglement between distant hole spins. Nat Phys, 2016, 12, 218 doi: 10.1038/nphys3605
[6]
Senellart P, Solomon G, White A. High-performance semiconductor quantum-dot single-photon sources. Nat Nanotechnol, 2017, 12(11), 1026 doi: 10.1038/nnano.2017.218
[7]
Wang H, Hu H, Chung T H, et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys Rev Lett, 2019, 122(11), 113602 doi: 10.1103/PhysRevLett.122.113602
[8]
Plumhof J D, Trotta R, Rastelli A, et al. Experimental methods of post-growth tuning of the excitonic fine structure splitting in semiconductor quantum dots. Nanoscale Res Lett, 2012, 7(1), 336 doi: 10.1186/1556-276X-7-336
[9]
Bennett A J, Pooley M A, Stevenson R M, et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat Phys, 2010, 6(12), 947 doi: 10.1038/nphys1780
[10]
Ghali M, Ohtani K, Ohno Y, et al. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field. Nat Commun, 2012, 3, 661 doi: 10.1038/ncomms1657
[11]
Trotta R, Zallo E, Ortix C, et al. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. Phys Rev Lett, 2012, 109(14), 147401 doi: 10.1103/PhysRevLett.109.147401
[12]
Wu X F, Wei H, Dou X M, et al. In situ tuning biexciton antibinding-binding transition and fine-structure splitting through hydrostatic pressure in single InGaAs quantum dots. Europhys Lett, 2014, 107(2), 27008 doi: 10.1209/0295-5075/107/27008
[13]
Wang J, Gong M, Guo G C, et al. Eliminating the fine structure splitting of excitons in self-assembled InAs/GaAs quantum dots via combined stresses. Appl Phys Lett, 2012, 101(6), 2513 doi: 10.1063/1.4745188
[14]
Dou X, Sun B, Wang B, et al. Photoluminescence energy and fine structure splitting in single quantum dots by uniaxial stress. Chin Phys Lett, 2008, 25(3), 1120 doi: 10.1088/0256-307X/25/3/085
[15]
Keil R, Zopf M, Chen Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat Commun, 2017, 8, 15501 doi: 10.1038/ncomms15501
[16]
Zhang J, Wildmann J S, Ding F, et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat Commun, 2015, 6, 10067 doi: 10.1038/ncomms10067
[17]
Ding F, Singh R, Plumhof J D, et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress. Phys Rev Lett, 2010, 104(6), 067405 doi: 10.1103/PhysRevLett.104.067405
[18]
Desai S B, Seol G, Kang J S, et al. Strain-induced indirect to direct bandgap transition in multi layer WSe2. Nano Lett, 2014, 14(8), 4592 doi: 10.1021/nl501638a
[19]
Conley H J, Wang B, Ziegler J I, et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett, 2013, 13(8), 3626 doi: 10.1021/nl4014748
[20]
Cardona M. Piezo-electroreflectance in Ge, GaAs, and Si. Phys Rev, 1968, 172(3), 816 doi: 10.1103/PhysRev.172.816
[21]
Seidl S, Kroner M, Högele, Alexander, et al. Effect of uniaxial stress on excitons in a self-assembled quantum dot. Appl Phys Lett, 2006, 88(20), 2513 doi: 10.1063/1.2204843
[22]
Gong M, Zhang W, Guo G C, et al. exciton polarization, fine-structure splitting, and the asymmetry of quantum dots under uniaxial stress. Phys Rev Lett, 2011, 106(22), 227401 doi: 10.1103/PhysRevLett.106.227401
[23]
Xiong W, Xu X, Luo J W, et al. fundamental intrinsic lifetimes in semiconductor self-assembled quantum dots. Phys Rev Appl, 2018, 10(4), 044009 doi: 10.1103/PhysRevApplied.10.044009
[24]
Troiani F, Tejedor C. Entangled photon pairs from a quantum-dot cascade decay: The effect of time reordering. Phys Rev B, 2008, 78(15), 155305 doi: 10.1103/PhysRevB.78.155305
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3889 Times PDF downloads: 70 Times Cited by: 0 Times

    History

    Received: 04 May 2019 Revised: 29 May 2019 Online: Accepted Manuscript: 04 June 2019Uncorrected proof: 10 June 2019Published: 05 July 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hao Chen, Xiuming Dou, Kun Ding, Baoquan Sun. Electrically driven uniaxial stress device for tuning in situ semiconductor quantum dot symmetry and exciton emission in cryostat[J]. Journal of Semiconductors, 2019, 40(7): 072901. doi: 10.1088/1674-4926/40/7/072901 H Chen, X M Dou, K Ding, B Q Sun, Electrically driven uniaxial stress device for tuning in situ semiconductor quantum dot symmetry and exciton emission in cryostat[J]. J. Semicond., 2019, 40(7): 072901. doi: 10.1088/1674-4926/40/7/072901.Export: BibTex EndNote
      Citation:
      Hao Chen, Xiuming Dou, Kun Ding, Baoquan Sun. Electrically driven uniaxial stress device for tuning in situ semiconductor quantum dot symmetry and exciton emission in cryostat[J]. Journal of Semiconductors, 2019, 40(7): 072901. doi: 10.1088/1674-4926/40/7/072901

      H Chen, X M Dou, K Ding, B Q Sun, Electrically driven uniaxial stress device for tuning in situ semiconductor quantum dot symmetry and exciton emission in cryostat[J]. J. Semicond., 2019, 40(7): 072901. doi: 10.1088/1674-4926/40/7/072901.
      Export: BibTex EndNote

      Electrically driven uniaxial stress device for tuning in situ semiconductor quantum dot symmetry and exciton emission in cryostat

      doi: 10.1088/1674-4926/40/7/072901
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return