Citation: 
Yong Zhang. Applications of Huang–Rhys theory in semiconductor optical spectroscopy[J]. Journal of Semiconductors, 2019, 40(9): 091102. doi: 10.1088/16744926/40/9/091102
Y Zhang, Applications of Huang–Rhys theory in semiconductor optical spectroscopy[J]. J. Semicond., 2019, 40(9): 091102. doi: 10.1088/16744926/40/9/091102.
Export: BibTex EndNote

Applications of Huang–Rhys theory in semiconductor optical spectroscopy
doi: 10.1088/16744926/40/9/091102
More Information
Abstract
A brief review of Huang–Rhys theory and Albrechtos theory is provided, and their connection and applications are discussed. The former is a first order perturbative theory on optical transitions intended for applications such as absorption and emission involving localized defect or impurity centers, emphasizing lattice relaxation or mixing of vibrational states due to electron–phonon coupling. The coupling strength is described by the Huang–Rhys factor. The latter theory is a second order perturbative theory on optical transitions intended for Raman scattering, and can inprinciple include electron–phonon coupling in both electronic states and vibrational states. These two theories can potentially be connected through the common effect of lattice relaxation – nonorthonormal vibrational states associated with different electronic states. Because of this perceived connection, the latter theory is often used to explain resonant Raman scattering of LO phonons in bulk semiconductors and further used to describe the size dependence of electron–phonon coupling or Huang–Rhys factor in semiconductor nanostructures. Specifically, the A term in Albrechtos theory is often invoked to describe the multiLOphonon resonant Raman peaks in both bulk and nanostructured semiconductors in the literature, due to the misconception that a freeexciton could have a strong lattice relaxation. Without lattice relaxation, the A term will give rise to Rayleigh or elastic scattering. Lattice relaxation is only significant for highly localized defect or impurity states, and should be practically zero for either single particle states or free exciton states in a bulk semiconductor or for confined states in a semiconductor nanostructure that is not extremely small. 
References
[1] Huang K, Rhys A, Mott N F. Theory of light absorption and nonradiative transitions in Fcentres. Proc Royal Soc London A, 1950, 204, 406 doi: 10.1098/rspa.1950.0184[2] Permogorov S. Excitons. NorthHolland Publishing Company, 1982, 177[3] Cardona M. Light Scattering in Solids II. Springer Berlin Heidelberg, 1982, 19[4] Karazhanov S Z, Yong Z, Wang L W, et al. Resonant defect states and strong lattice relaxation of oxygen vacancies in WO_{3}. Phys Rev B, 2003, 68, 233204 doi: 10.1103/PhysRevB.68.233204[5] Albrecht A C. On the theory of Raman intensities. J Chem Phys, 1961, 34, 1476 doi: 10.1063/1.1701032[6] Zhang Y, Ge W K, Sturge M D, et al. Phonon sideband of excitons bound to isoelectronic impurities in semiconductors. Phys Rev B, 1969, 47 doi: 10.1103/PhysRevB.47.6330[7] Zhang Y, Ge W K. Behavior of nitrogen impurities in III–V semiconductors. J Lumin, 2000, 85, 247 doi: 10.1016/S00222313(99)001933[8] Imbusch G F. Luminescence spectroscopy. New York: Academic Press, 1978, 1[9] Bassani F, Parravicini G P. Electronic states and optical transitions in solids. Oxford: Pergamon, 1975, 190 doi: 10.1063/1.3023374[10] Yu P Y, Cardona M. Fundamentals of semiconductors. Heidelberg: SpringerVerlag, 1996[11] Pekar S I. Theory of Fcenters. Zh Eksp Teor Fiz, 1950, 20, 510[12] Dean P J, Herbert D C. Excitons. New York: Springer, 1979[13] Huang K. Lattice relaxation and theory of multiphonon transitions. Prog Phys, 1981, 1, 31[14] Balkanski M. Effects of electron–phonon interaction in luminescence and light scattering. J Lumin, 1981, 24/25, 381 doi: 10.1016/00222313(81)902945[15] Snyder P G, Myles C W, Dai H H, et al. Model for phononassisted indirect recombination at impurity sites in semiconductors: A test of impurity wavefunction theories. Phys Rev B, 1985, 32, 2685 doi: 10.1103/PhysRevB.32.2685[16] Ridley B K. Quantum processes in semiconductors. Oxford: Oxford Science Publications, 1999[17] Wang Y L, Gu Z Q, Huang K. A disorder induced lattice relaxation mechanism in alloys. Chin Sci Bull, 1981, 26, 531 doi: 10.1360/csb1981269531[18] SchmittRink S, Miller D A B, Chemla D S. Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. Phys Rev B, 1987, 35, 8113 doi: 10.1103/PhysRevB.35.8113[19] Nomura S, Kobayashi T. ExcitonLOphonon couplings in spherical semiconductor microcrystallites. Phys Rev B, 1992, 45, 1305 doi: 10.1103/PhysRevB.45.1305[20] Merlin R, Güntherodt G, Humphreys R, et al. Multiphonon processes in YbS. Phys Rev B, 1987, 17, 4951 doi: 10.1103/PhysRevB.17.4951[21] Heitz R, Mukhametzhanov I, Stier O, et al. Enhanced polar excitonLOphonon interaction in quantum dots. Phys Rev Lett, 1999, 83, 4654 doi: 10.1103/PhysRevLett.83.4654[22] Alivisatos A P, Harris T D, Carroll P J, et al. Electron–vibration coupling in semiconductor clusters studied by resonance Raman spectroscopy. J Chem Phys, 1989, 90, 3463 doi: 10.1063/1.455855[23] Zhang Q, Zhang J, Utama M I B, et al. Exciton–phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy. Phys Rev B, 2012, 85, 085418 doi: 10.1103/PhysRevB.85.085418[24] Klein M C, Hache F, Ricard D, et al. Size dependence of electron–phonon coupling in semiconductor nanospheres: The case of CdSe. Phys Rev B, 1990, 42, 11123 doi: 10.1103/PhysRevB.42.11123[25] Faulkner R A. Toward a theory of isoelectronic impurities in semiconductors. Phys Rev, 1968, 175, 991 doi: 10.1103/PhysRev.175.991[26] Zhang Y. Acceptorlike bound excitons in semiconductors. Phys Rev B, 1992, 45, 9025 doi: 10.1103/PhysRevB.45.9025[27] Zhang Y, Mascarenhas A, Wang L W. Systematic approach to distinguishing a perturbed host state from an impurity state in a supercell calculation for a doped semiconductor: Using GaP:N as an example. Phys Rev B, 2006, 74, 041201 doi: 10.1103/PhysRevB.74.041201[28] Shi L, Wang L W. Ab initio calculations of deeplevel carrier nonradiative recombination rates in bulk semiconductors. Phys Rev Lett, 2012, 109, 245501 doi: 10.1103/PhysRevLett.109.245501[29] Champion P M, Albrecht A C. Investigations of Soret excited resonance Raman excitation profiles in cytochrome c. J Chem Phys, 1979, 71, 1110 doi: 10.1063/1.438455[30] Scamarcio G, Spagnolo V, Ventruti G, et al. Size dependence of electron–LOphonon coupling in semiconductor nanocrystals. Phys Rev B, 1996, 53, R10489 doi: 10.1103/PhysRevB.53.R10489[31] Kelley A M. Resonance Raman overtone intensities and electron–phonon coupling strengths in semiconductor nanocrystals. J Phys Chem A, 2013, 117, 6143 doi: 10.1021/jp400240y[32] RodríguezSuárez R, MenéndezProupin E, TralleroGiner C, et al. Multiphonon resonant Raman scattering in nanocrystals. Phys Rev B, 2000, 62, 11006 doi: 10.1103/PhysRevB.62.11006[33] Yi Y, Marmon J K, Chen Y, et al. unpublished[34] Dos Santos M P, Hirlimann C, Balkanski M. Local induced activity in resonant Raman scattering of GaP:N. Phys B + C, 1983, 117/118, 108 doi: 10.1016/03784363(83)904540[35] Frommer A, Cohen E, Ron A. Resonant Ramanscattering induced by excitons bound to nitrogen impurities in GaP:N. Phys Rev B, 1993, 47, 1823 doi: 10.1103/physrevb.47.1823[36] Tan P H, Xu Z Y, Luo X D, et al. Resonant Raman scattering with the E_{+} band in a dilute GaAs_{1–x}N_{x} alloy (x = 0.1%). Appl Phys Lett, 2006, 89, 101912 doi: 10.1063/1.2345605 
Proportional views