ARTICLES

I/P interface modification for stable and efficient perovskite solar cells

Jie Zhang1, 2, 3, 4, Shixin Hou1, 2, 3, 4, Renjie Li1, 2, 3, 4, Bingbing Chen1, 2, 3, 4, Fuhua Hou1, 2, 3, 4, Xinghua Cui1, 2, 3, 4, Jingjing Liu1, 2, 3, 4, Qi Wang1, 2, 3, 4, Pengyang Wang1, 2, 3, 4, , Dekun Zhang1, 2, 3, 4, Ying Zhao1, 2, 3, 4 and Xiaodan Zhang1, 2, 3, 4,

+ Author Affiliations

 Corresponding author: Pengyang Wang, pywang@nankai.edu.cn; Xiaodan Zhang, xdzhang@nankai.edu.cn

PDF

Turn off MathJax

Abstract: Interface engineering has played an increasingly essential role in the development of perovskite solar cells (PSCs). Herein, we adopted an effective and simple one-step interface passivation method on a FA-based perovskite to fabricate efficient and stable planar PSCs. The surface defects are reduced by the perovskite interface passivation layer incorporated between the hole transport and perovskite absorber layers, and then non-radiative recombination is suppressed while interfacial carrier extraction is enhanced. The passivated planar PSCs demonstrates 20.83% power conversion efficiency (PCE), which is caused by the simultaneous enhancement of the fill factor and open-circuit voltage. In addition, the device also shows great ambient and thermal stability. It retains 94% of its original PCE after 1000 h under ambient air without encapsulation as well as 90% of its initial efficiency after 400 h under continuous heating at 65 °C with encapsulation. This research provides a strategy for the development of efficient and stable PSCs.

Key words: planar perovskite solar cellinterfacial engineeringone-step solutionstability



[1]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240), 1234 doi: 10.1126/science.aaa9272
[2]
Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225), 967 doi: 10.1126/science.aaa5760
[3]
Saidaminov M I, Abdelhady A L, Murali B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat Commun, 2015, 6(1), 1 doi: 10.1038/ncomms8586
[4]
Han Q, Bae S H, Sun P, et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv Mater, 2016, 28(11), 2253 doi: 10.1002/adma.201505002
[5]
Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat Mater, 2017, 16(1), 16 doi: 10.1038/nmat4834
[6]
McMeekin D P, Sadoughi G, Rehman W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016, 351(6269), 151 doi: 10.1126/science.aad5845
[7]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17), 6050 doi: 10.1021/ja809598r
[8]
Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2, 591 doi: 10.1038/srep00591
[9]
Jiang Q, Zhao Y, Zhang X, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 2019, 13(7), 460 doi: 10.1038/s41566-019-0398-2
[10]
[11]
Hanusch F C, Wiesenmayer E, Mankel E, et al. Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. J Phys Chem Lett, 2014, 5(16), 2791 doi: 10.1021/jz501237m
[12]
Zhao X, Park N G. Stability issues on perovskite solar cells. In: Photonics. Multidisciplinary Digital Publishing Institute, 2015, 2(4), 1139
[13]
Xu T, Chen L, Guo Z, et al. Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Phys Chem Chem Phys, 2016, 18(39), 27026 doi: 10.1039/C6CP04553G
[14]
Zheng X, Chen B, Dai J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat Energy, 2014, 2, 17102 doi: 10.1038/nenergy.2017.102
[15]
Yang W S, Park B W, Jung E H, et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 2017, 356(6345), 1376 doi: 10.1126/science.aan2301
[16]
Wang F, Bai S, Tress W, et al. Defects engineering for high-performance perovskite solar cells. npj Flexible Electron, 2018, 2(1), 1 doi: 10.1038/s41528-017-0014-9
[17]
Meng L, Sun C, Wang R, et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J Am Chem Soc, 2018, 140(49), 17255 doi: 10.1021/jacs.8b10520
[18]
Bai Y, Meng X, Yang S. Interface engineering for highly efficient and stable planar p–i–n perovskite solar cells. Adv Energy Mater, 2018, 8(5), 1701883 doi: 10.1002/aenm.201701883
[19]
Sherkar T S, Momblona C, Gil-Escrig L, et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett, 2017, 2(5), 1214 doi: 10.1021/acsenergylett.7b00236
[20]
Moriya M, Hirotani D, Ohta T, et al. Architecture of the interface between the perovskite and hole-transport layers in perovskite solar cells. ChemSusChem, 2016, 9(18), 2634 doi: 10.1002/cssc.201600848
[21]
Tan H, Che F, Wei M, et al. Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat Commun, 2018, 9(1), 1 doi: 10.1038/s41467-017-02088-w
[22]
Li N, Tao S, Chen Y, et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat Energy, 2019, 4(5), 408 doi: 10.1038/s41560-019-0382-6
[23]
Wang P, Li R, Chen B, et al. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%. Adv Mater, 2020, 32(6), 1905766 doi: 10.1002/adma.201905766
[24]
Jiang Q, Chu Z, Wang P, et al. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv Mater, 2017, 29(46), 1703852 doi: 10.1002/adma.201703852
[25]
Turren-Cruz S H, Hagfeldt A, Saliba M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science, 2018, 362(6413), 449 doi: 10.1126/science.aat3583
[26]
Wang Y, Wu T, Barbaud J, et al. Stabilizing heterostructures of soft perovskite semiconductors. Science, 2019, 365(6454), 687 doi: 10.1126/science.aax8018
[27]
Wang P, Jiang Q, Zhao Y, et al. Synergistic improvement of perovskite film quality for efficient solar cells via multiple chloride salt additives. Sci Bull, 2018, 63(11), 726 doi: 10.1016/j.scib.2018.05.003
[28]
Tumen-Ulzii G, Qin C, Klotz D, et al. Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells. Adv Mater, 2020, 32(16), 1905035 doi: 10.1002/adma.201905035
[29]
Jeng J Y, Chen K C, Chiang T Y, et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv Mater, 2014, 26(24), 4107 doi: 10.1002/adma.201306217
[30]
You J, Meng L, Song T B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol, 2016, 11(1), 75 doi: 10.1038/nnano.2015.230
[31]
Xu G, Bi P, Wang S, et al. Integrating ultrathin bulk-heterojunction organic semiconductor intermediary for high-performance low-bandgap perovskite solar cells with low energy loss. Adv Funct Mater, 2018, 28(42), 1804427 doi: 10.1002/adfm.201804427
[32]
Zhang J, Xue R, Xu G, et al. Self-doping fullerene electrolyte-based electron transport layer for all-room-temperature-processed high-performance flexible polymer solar cells. Adv Funct Mater, 2018, 28(13), 1705847 doi: 10.1002/adfm.201705847
[33]
Wang S, Sakurai T, Wen W, et al. Energy level alignment at interfaces in metal halide perovskite solar cells. Adv Mater Interfaces, 2018, 5(22), 1800260 doi: 10.1002/admi.201800260
[34]
Li X, Bi D, Yi C, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353(6294), 58 doi: 10.1126/science.aaf8060
[35]
Noel N K, Abate A, Stranks S D, et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano, 2014, 8(10), 9815 doi: 10.1021/nn5036476
[36]
Du Y, Xin C, Huang W, et al. Polymeric surface modification of NiO x-based inverted planar perovskite solar cells with enhanced performance. ACS Sustain Chem Eng, 2018, 6(12), 16806 doi: 10.1021/acssuschemeng.8b04078
[37]
Lampert M A. Simplified theory of space-charge-limited currents in an insulator with traps. Phys Rev, 1956, 103(6), 1648 doi: 10.1103/PhysRev.103.1648
[38]
Zhumekenov A A, Saidaminov M I, Haque M A, et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett, 2016, 1(1), 32 doi: 10.1021/acsenergylett.6b00002
[39]
Zhang M, Chen Q, Xue R, et al. Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat Commun, 2019, 10(1), 1 doi: 10.1038/s41467-018-07882-8
[40]
Wang S, Chen H, Zhang J, et al. Targeted therapy for interfacial engineering toward stable and efficient perovskite solar cells. Adv Mater, 2019, 31(41), 1903691 doi: 10.1002/adma.201903691
Fig. 1.  (Color online) Schematic diagram of the formation of passivation layer.

Fig. 2.  (Color online) SEM and AFM images of (a, c) control and (b, d) passivated perovskite films on ITO/SnO2 substrates. (e) Device structure of the passivated perovskite solar cells. (f) XRD patterns of passivated and control perovskite films.

Fig. 3.  (Color online) (a) J–V curves of the control and passivated perovskite solar cells. (b) External quantum efficiency (EQE) spectra for the passivated and control devices.

Fig. 4.  (Color online) (a) Spectra of ultraviolet photoelectron spectroscopy (UPS). (b) Secondary electron cutoff and (c) valence band region near EF of the perovskite film without (control) and with MABr (2 mg/mL) deposited on ITO substrate. (d) The energy level diagram of PSCs. (e) Steady-state photoluminescence (PL) and (f) time-resolved PL (TRPL) spectra of the passivated and control perovskite film.

Fig. 5.  (Color online) I−V curves with the device structure of ITO/perovskite/Au, where the perovskite (a) without (control) and (b) with the passivation measured in the dark. (c) Steady-state photoluminescence (PL) and (d) time-resolved PL (TRPL) spectra of the passivated and control perovskite film. (e) The dark I−V characteristics of the perovskite devices with and without the MABr.

Fig. 6.  (Color online) (a) Histogram distribution of the PCE for devices with control (40 cells) and passivated perovskite films (40 cells). (b) J−V curves and (c) EQE spectra with integrated JSC of the best passivated perovskite devices. (d) Current density measured for 300 s at the steady power output (SPO) with a fixed maximum voltage (0.97 V).

Fig. 7.  (Color online) (a) PCEs evolution of devices in ambient air with the room temperature of 25–30 °C, and the humidity of 20%–30%. (b) Devices kept at 65 °C in ambient air with encapsulation for 400 h.

Fig. 8.  (Color online) XRD patterns of (a) control and (b) passivated perovskite films after in humid air (with RH: 20%−30%) for 0, 100, 400, 700, and 1000 h.

Table 1.   Summary of the device performance with different concentrations of MABr treatment.

MABr concentrationJSC (mA/cm2)VOC (V)FF (%)Eff (%)
Control22.601.1073.9818.39
1 mg/mL22.611.1077.0119.15
2 mg/mL22.751.1477.0319.97
3 mg/mL22.531.1376.4719.46
4 mg/mL21.901.1074.0817.84
5 mg/mL21.981.1470.0217.54
DownLoad: CSV

Table 2.   Summary of fitted results of TRPL of the passivated and control devices.

Sampleτ1 (ns)τ2 (ns)τ1 (%)τ2 (%)A1A2
Control1318222.2777.73620.89123.49
Passivation1019021.3078.70602.58124.06
DownLoad: CSV
[1]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240), 1234 doi: 10.1126/science.aaa9272
[2]
Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225), 967 doi: 10.1126/science.aaa5760
[3]
Saidaminov M I, Abdelhady A L, Murali B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat Commun, 2015, 6(1), 1 doi: 10.1038/ncomms8586
[4]
Han Q, Bae S H, Sun P, et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv Mater, 2016, 28(11), 2253 doi: 10.1002/adma.201505002
[5]
Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat Mater, 2017, 16(1), 16 doi: 10.1038/nmat4834
[6]
McMeekin D P, Sadoughi G, Rehman W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science, 2016, 351(6269), 151 doi: 10.1126/science.aad5845
[7]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17), 6050 doi: 10.1021/ja809598r
[8]
Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2, 591 doi: 10.1038/srep00591
[9]
Jiang Q, Zhao Y, Zhang X, et al. Surface passivation of perovskite film for efficient solar cells. Nat Photonics, 2019, 13(7), 460 doi: 10.1038/s41566-019-0398-2
[10]
[11]
Hanusch F C, Wiesenmayer E, Mankel E, et al. Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. J Phys Chem Lett, 2014, 5(16), 2791 doi: 10.1021/jz501237m
[12]
Zhao X, Park N G. Stability issues on perovskite solar cells. In: Photonics. Multidisciplinary Digital Publishing Institute, 2015, 2(4), 1139
[13]
Xu T, Chen L, Guo Z, et al. Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Phys Chem Chem Phys, 2016, 18(39), 27026 doi: 10.1039/C6CP04553G
[14]
Zheng X, Chen B, Dai J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat Energy, 2014, 2, 17102 doi: 10.1038/nenergy.2017.102
[15]
Yang W S, Park B W, Jung E H, et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science, 2017, 356(6345), 1376 doi: 10.1126/science.aan2301
[16]
Wang F, Bai S, Tress W, et al. Defects engineering for high-performance perovskite solar cells. npj Flexible Electron, 2018, 2(1), 1 doi: 10.1038/s41528-017-0014-9
[17]
Meng L, Sun C, Wang R, et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J Am Chem Soc, 2018, 140(49), 17255 doi: 10.1021/jacs.8b10520
[18]
Bai Y, Meng X, Yang S. Interface engineering for highly efficient and stable planar p–i–n perovskite solar cells. Adv Energy Mater, 2018, 8(5), 1701883 doi: 10.1002/aenm.201701883
[19]
Sherkar T S, Momblona C, Gil-Escrig L, et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett, 2017, 2(5), 1214 doi: 10.1021/acsenergylett.7b00236
[20]
Moriya M, Hirotani D, Ohta T, et al. Architecture of the interface between the perovskite and hole-transport layers in perovskite solar cells. ChemSusChem, 2016, 9(18), 2634 doi: 10.1002/cssc.201600848
[21]
Tan H, Che F, Wei M, et al. Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. Nat Commun, 2018, 9(1), 1 doi: 10.1038/s41467-017-02088-w
[22]
Li N, Tao S, Chen Y, et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat Energy, 2019, 4(5), 408 doi: 10.1038/s41560-019-0382-6
[23]
Wang P, Li R, Chen B, et al. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%. Adv Mater, 2020, 32(6), 1905766 doi: 10.1002/adma.201905766
[24]
Jiang Q, Chu Z, Wang P, et al. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv Mater, 2017, 29(46), 1703852 doi: 10.1002/adma.201703852
[25]
Turren-Cruz S H, Hagfeldt A, Saliba M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science, 2018, 362(6413), 449 doi: 10.1126/science.aat3583
[26]
Wang Y, Wu T, Barbaud J, et al. Stabilizing heterostructures of soft perovskite semiconductors. Science, 2019, 365(6454), 687 doi: 10.1126/science.aax8018
[27]
Wang P, Jiang Q, Zhao Y, et al. Synergistic improvement of perovskite film quality for efficient solar cells via multiple chloride salt additives. Sci Bull, 2018, 63(11), 726 doi: 10.1016/j.scib.2018.05.003
[28]
Tumen-Ulzii G, Qin C, Klotz D, et al. Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells. Adv Mater, 2020, 32(16), 1905035 doi: 10.1002/adma.201905035
[29]
Jeng J Y, Chen K C, Chiang T Y, et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv Mater, 2014, 26(24), 4107 doi: 10.1002/adma.201306217
[30]
You J, Meng L, Song T B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol, 2016, 11(1), 75 doi: 10.1038/nnano.2015.230
[31]
Xu G, Bi P, Wang S, et al. Integrating ultrathin bulk-heterojunction organic semiconductor intermediary for high-performance low-bandgap perovskite solar cells with low energy loss. Adv Funct Mater, 2018, 28(42), 1804427 doi: 10.1002/adfm.201804427
[32]
Zhang J, Xue R, Xu G, et al. Self-doping fullerene electrolyte-based electron transport layer for all-room-temperature-processed high-performance flexible polymer solar cells. Adv Funct Mater, 2018, 28(13), 1705847 doi: 10.1002/adfm.201705847
[33]
Wang S, Sakurai T, Wen W, et al. Energy level alignment at interfaces in metal halide perovskite solar cells. Adv Mater Interfaces, 2018, 5(22), 1800260 doi: 10.1002/admi.201800260
[34]
Li X, Bi D, Yi C, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353(6294), 58 doi: 10.1126/science.aaf8060
[35]
Noel N K, Abate A, Stranks S D, et al. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano, 2014, 8(10), 9815 doi: 10.1021/nn5036476
[36]
Du Y, Xin C, Huang W, et al. Polymeric surface modification of NiO x-based inverted planar perovskite solar cells with enhanced performance. ACS Sustain Chem Eng, 2018, 6(12), 16806 doi: 10.1021/acssuschemeng.8b04078
[37]
Lampert M A. Simplified theory of space-charge-limited currents in an insulator with traps. Phys Rev, 1956, 103(6), 1648 doi: 10.1103/PhysRev.103.1648
[38]
Zhumekenov A A, Saidaminov M I, Haque M A, et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Lett, 2016, 1(1), 32 doi: 10.1021/acsenergylett.6b00002
[39]
Zhang M, Chen Q, Xue R, et al. Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat Commun, 2019, 10(1), 1 doi: 10.1038/s41467-018-07882-8
[40]
Wang S, Chen H, Zhang J, et al. Targeted therapy for interfacial engineering toward stable and efficient perovskite solar cells. Adv Mater, 2019, 31(41), 1903691 doi: 10.1002/adma.201903691
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3075 Times PDF downloads: 74 Times Cited by: 0 Times

    History

    Received: 24 February 2020 Revised: 27 March 2020 Online: Accepted Manuscript: 13 April 2020Uncorrected proof: 14 April 2020Published: 13 May 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jie Zhang, Shixin Hou, Renjie Li, Bingbing Chen, Fuhua Hou, Xinghua Cui, Jingjing Liu, Qi Wang, Pengyang Wang, Dekun Zhang, Ying Zhao, Xiaodan Zhang. I/P interface modification for stable and efficient perovskite solar cells[J]. Journal of Semiconductors, 2020, 41(5): 052202. doi: 10.1088/1674-4926/41/5/052202 J Zhang, S X Hou, R J Li, B B Chen, F H Hou, X H Cui, J J Liu, Q Wang, P Y Wang, D K Zhang, Y Zhao, X D Zhang, I/P interface modification for stable and efficient perovskite solar cells[J]. J. Semicond., 2020, 41(5): 052202. doi: 10.1088/1674-4926/41/5/052202.Export: BibTex EndNote
      Citation:
      Jie Zhang, Shixin Hou, Renjie Li, Bingbing Chen, Fuhua Hou, Xinghua Cui, Jingjing Liu, Qi Wang, Pengyang Wang, Dekun Zhang, Ying Zhao, Xiaodan Zhang. I/P interface modification for stable and efficient perovskite solar cells[J]. Journal of Semiconductors, 2020, 41(5): 052202. doi: 10.1088/1674-4926/41/5/052202

      J Zhang, S X Hou, R J Li, B B Chen, F H Hou, X H Cui, J J Liu, Q Wang, P Y Wang, D K Zhang, Y Zhao, X D Zhang, I/P interface modification for stable and efficient perovskite solar cells[J]. J. Semicond., 2020, 41(5): 052202. doi: 10.1088/1674-4926/41/5/052202.
      Export: BibTex EndNote

      I/P interface modification for stable and efficient perovskite solar cells

      doi: 10.1088/1674-4926/41/5/052202
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return