ARTICLES

Mn doping effects on the gate-tunable transport properties of Cd3As2 films epitaxied on GaAs

Hailong Wang1, 2, Jialin Ma1, 2, Qiqi Wei1, 2 and Jianhua Zhao1, 2, 3,

+ Author Affiliations

 Corresponding author: Jianhua Zhao, jhzhao@semi.ac.cn

PDF

Turn off MathJax

Abstract: The Mn doping effects on the gate-tunable transport properties of topological Dirac semimetal Cd3As2 films have been investigated. Mn-doped Cd3As2 films are directly grown on GaAs(111)B substrates by molecular-beam epitaxy, during which the single crystal phase can be obtained with Mn concentration less than 2%. Shubnikov-de Haas oscillation and quantum Hall effect are observed at low temperatures, and electrons are found to be the dominant carrier in the whole temperature range. Higher Mn content results in smaller lattice constant, lower electron mobility and larger effective band gap, while the carrier density seems to be unaffected by Mn-doping. Gating experiments show that Shubnikov-de Haas oscillation and quantum Hall effect are slightly modulated by electric field, which can be explained by the variation of electron density. Our results provide useful information for understanding the magnetic element doping effects on the transport properties of Cd3As2 films.

Key words: molecular-beam epitaxyDirac semimetalCd3As2 filmMn dopingquantum transport



[1]
Wang Z J, Weng H M, Wu Q S, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys Rev B, 2013, 88, 125427 doi: 10.1103/PhysRevB.88.125427
[2]
Ali M N, Gibson Q, Jeon S, et al. The crystal and electronic structures of Cd3As2, the three-dimensional electronic analogue of graphene. Inorg Chem, 2014, 53, 4062 doi: 10.1021/ic403163d
[3]
Borisenko S, Gibson Q, Evtushinsky D, et al. Experimental realization of a three-dimensional Dirac semimetal. Phys Rev Lett, 2014, 113, 027603 doi: 10.1103/PhysRevLett.113.027603
[4]
Liu Z K, Jiang J, Zhou B, et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat Mater, 2014, 13, 677 doi: 10.1038/nmat3990
[5]
Jeon S, Zhou B B, Gyenis A, et al. Landau quantization and quasipartical interference in the three-dimensional Dirac semimetal Cd3As2. Nat Mater, 2014, 13, 851 doi: 10.1038/nmat4023
[6]
Neupane M, Xu S Y, Sankar R, et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat Commun, 2014, 5, 3786 doi: 10.1038/ncomms4786
[7]
Potter A C, Kimchi I, Vishwanath A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat Commun, 2014, 5, 5161 doi: 10.1038/ncomms6161
[8]
He L P, Hong X C, Dong J K, et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2. Phys Rev Lett, 2014, 113, 246402 doi: 10.1103/PhysRevLett.113.246402
[9]
Liang T, Gibson Q, Ali M N, et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat Mater, 2015, 14, 280 doi: 10.1038/nmat4143
[10]
Zhao Y F, Liu H W, Zhang C L, et al. Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2. Phys Rev X, 2015, 5, 031037 doi: 10.1103/PhysRevX.5.031037
[11]
Jiang Z J, Zhao D, Jin Z, et al. Angular-dependent phase factor of Shubnikov-de Haas oscillations in the Dirac semimetal Cd3As2. Phys Rev Lett, 2015, 115, 226401 doi: 10.1103/PhysRevLett.115.226401
[12]
Moll P J W, Nair N L, Helm T, et al. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2. Nature, 2016, 535, 366 doi: 10.1038/nature18276
[13]
Zhang C, Narayan A, Lu S H, et al. Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2. Nat Commun, 2017, 8, 1272 doi: 10.1038/s41467-017-01438-y
[14]
Wang C M, Sun H P, Lu H Z, et al. 3D quantum Hall effect of Fermi arcs in topological semimetals. Phys Rev Lett, 2017, 119, 136806 doi: 10.1103/PhysRevLett.119.136806
[15]
Uchida M, Nakazawa Y, Nishihaya S, et al. Quantum Hall states observed in thin films of Dirac semimetal Cd3As2. Nat Commun, 2017, 8, 2274 doi: 10.1038/s41467-017-02423-1
[16]
Schumann T, Galletti L, Kealhofer D A, et al. Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys Rev Lett, 2018, 120, 016801 doi: 10.1103/PhysRevLett.120.016801
[17]
Goyal M, Galletti L, Salmani-Rezaie S, et al. Thickness dependence of the quantum Hall effect in films of the three-dimensional Dirac semimetal Cd3As2. APL Mater, 2018, 6, 026105 doi: 10.1063/1.5016866
[18]
Zhang C, Zhang Y, Yuan X, et al. Quantum Hall effect based on Weyl orbits in Cd3As2. Nature, 2019, 331, 565 doi: 10.1038/s41586-018-0798-3
[19]
Lin B C, Wang S, Wiedmann S, et al. Observation of an odd-integer quantum Hall effect from topological surface states in Cd3As2. Phys Rev Lett, 2019, 122, 036602 doi: 10.1103/PhysRevLett.122.036602
[20]
Zhang Y, Zhang C, Gao H X, et al. Large Hall angle-driven magneto-transport phenomena in topological Dirac semimetal Cd3As2. Appl Phys Lett, 2018, 113, 072104 doi: 10.1063/1.5037789
[21]
Nishihaya S, Uchida M, Nakazawa Y, et al. Quantized surface transport in topological Dirac semimetal films. Nat Commun, 2019, 10, 2564 doi: 10.1038/s41467-019-10499-0
[22]
Li C Z, Wang L X, Liu H W, et al. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nat Commun, 2015, 6, 10137 doi: 10.1038/ncomms10137
[23]
Li H, He H T, Lu H Z, et al. Negative magnetoresistance in Dirac semimetal Cd3As2. Nat Commun, 2016, 7, 10301 doi: 10.1038/ncomms10301
[24]
Aggarwal L, Gaurav A, Thakur G S, et al. Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd3As2. Nat Mater, 2016, 15, 32 doi: 10.1038/nmat4455
[25]
Wang H, Wang H C, Liu H W, et al. Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals. Nat Mater, 2016, 15, 38 doi: 10.1038/nmat4456
[26]
Wang A Q, Li C Z, Li C, et al. 4π-periodic supercurrent from surface states in Cd3As2 nanowire-based Josephson junctions. Phys Rev Lett, 2018, 121, 237701 doi: 10.1103/PhysRevLett.121.237701
[27]
Huang C, Zhou B T, Zhang H Q, et al. Proximity-induced surface superconductivity in Dirac semimetal Cd3As2. Nat Commun, 2019, 10, 2217 doi: 10.1038/s41467-019-10233-w
[28]
Wang L X, Li C Z, Yu D P, et al. Aharonov-Bohm oscillations in Dirac semimetal Cd3As2 nanowires. Nat Commun, 2016, 7, 10769 doi: 10.1038/ncomms10769
[29]
Wang L X, Wang S, Li J G, et al. Universal conductance fluctuation in Dirac semimetal Cd3As2 nanowires. Phys Rev B, 2016, 94, 161402 doi: 10.1103/PhysRevB.94.161402
[30]
Wang S, Lin B C, Zheng W Z, et al. Fano interference between bulk and surface states of a Dirac semimetal Cd3As2 nanowire. Phys Rev Lett, 2018, 120, 257701 doi: 10.1103/PhysRevLett.120.257701
[31]
Zhou T, Zhang C, Zhang H S, et al. Enhanced thermoelectric properties of the Dirac semimeatl Cd3As2. Inorg Chem Front, 2016, 3, 1637 doi: 10.1039/C6QI00383D
[32]
Jia Z Z, Li C Z, Li X Q, et al. Thermoelectric signature of the chiral anomaly in Cd3As2. Nat Commun, 2016, 7, 13013 doi: 10.1038/ncomms13013
[33]
Zhu C H, Wang F Q, Meng Y F, et al. A robust and tunable mid-infrared optical switch enabled by bulk Dirac fermions. Nat Commun, 2017, 8, 14111 doi: 10.1038/ncomms14111
[34]
Wang Q S, Li C Z, Ge S F, et al. Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd3As2. Nano Lett, 2017, 17, 834 doi: 10.1021/acs.nanolett.6b04084
[35]
Liu Y W, Zhang C, Yuan X, et al. Gate-tunable quantum oscillations in ambipolar Cd3As2 thin films. NPG Asia Mater, 2015, 7, e221 doi: 10.1038/am.2015.110
[36]
Li C Z, Li J G, Wang L X, et al. Two-carrier transport induced Hall anomaly and large tunable magnetoresistance in Dirac semimetal Cd3As2 nanoplates. ACS Nano, 2016, 10, 6020 doi: 10.1021/acsnano.6b01568
[37]
Goyal M, Kim H, Schumann T, et al. Surface states of strained thin films of the Dirac semimetal Cd3As2. Phys Rev Mater, 2019, 3, 064204 doi: 10.1103/PhysRevMaterials.3.064204
[38]
Jin H, Dai Y, Ma Y D, et al. The electronic and magnetic properties of transition-metal element doped three-dimensional topological Dirac semimetal Cd3As2. J Mater Chem C, 2015, 3, 3547 doi: 10.1039/C4TC02609H
[39]
Liu Y W, Tiwari R, Narayan A, et al. Cr doping induced negative transverse magnetoresistance in Cd3As2 thin films. Phys Rev B, 2018, 97, 085303 doi: 10.1103/PhysRevB.97.085303
[40]
Yuan X, Chen P H, Zhang L Q, et al. Direct observation of landau level resonance and mass generation in Dirac semimetal Cd3As2 thin films. Nano Lett, 2017, 17, 2211 doi: 10.1021/acs.nanolett.6b04778
[41]
Sun Y, Meng Y F, Dai R H, et al. Slowing down photocarrier relaxation in Dirac semimetal Cd3As2 via Mn doping. Opt Lett, 2019, 44, 4103 doi: 10.1364/OL.44.004103
[42]
Zakhvalinskii V S, Nikulicheva T B, Lahderanta E, et al. Anomalous cyclotron mass dependence on the magnetic field and Berry’s phase in (Cd1– x yZn xMn y)3As2 solid solutions. J Phys Condens Matter, 2017, 29, 455701 doi: 10.1088/1361-648X/aa8bdb
[43]
Schumann T, Goyal M, Kim H, et al. Molecular beam epitaxy of Cd3As2 on a III–V substrate. APL Mater, 2016, 4, 126110 doi: 10.1063/1.4972999
[44]
Nakazawa Y, Uchida M, Nishihaya S, et al. Molecular beam epitaxy of three-dimensionally thick Dirac semimetal Cd3As2 films. APL Mater, 2019, 7, 071109 doi: 10.1063/1.5098529
[45]
Kealhofer D A, Kim H, Schumann T. Basal-plane growth of cadmium arsenide by molecular beam epitaxy. Phys Rev Mater, 2019, 3, 031201 doi: 10.1103/PhysRevMaterials.3.031201
[46]
Wang H L, Ma J L, Yu X Z, et al. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures. J Phys D, 2017, 50, 025003 doi: 10.1088/1361-6463/50/2/025003
[47]
Wang H L, Ma J L, Zhao J H. Giant modulation of magnetism in (Ga,Mn)As ultrathin films via electric field. J Semicond, 2019, 40, 092501 doi: 10.1088/1674-4926/40/9/092501
Fig. 1.  (Color online) (a) Layer structure, (b) RHEED pattern, and (c) XRD curves of Cd3As2 films with various Mn doping concentration. (d) The enlarged XRD curves of (c) around the Cd3As2 (112) diffraction peak.

Fig. 2.  (Color online) (a) Field effect device diagram, (b) Temperature dependence, and (c, d) Magnetic field dependence of Mn-doped Cd3As2 films. The inset of (b) shows the fitting line based on Arrhenius equation, in which the blue curve is offset for clarity.

Fig. 3.  (Color online) Hall resistance as a function of magnetic field in Mn-doped Cd3As2 films at (a) 300 K and (b) 2 K. The unit of (b) is h/e2 (or ~2 5812.8 Ω).

Fig. 4.  (Color online) Magnetic field dependence of (a) longitudinal and (b) transverse resistances for a 0.5% Mn-doped Cd3As2 film at 2 K.

[1]
Wang Z J, Weng H M, Wu Q S, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys Rev B, 2013, 88, 125427 doi: 10.1103/PhysRevB.88.125427
[2]
Ali M N, Gibson Q, Jeon S, et al. The crystal and electronic structures of Cd3As2, the three-dimensional electronic analogue of graphene. Inorg Chem, 2014, 53, 4062 doi: 10.1021/ic403163d
[3]
Borisenko S, Gibson Q, Evtushinsky D, et al. Experimental realization of a three-dimensional Dirac semimetal. Phys Rev Lett, 2014, 113, 027603 doi: 10.1103/PhysRevLett.113.027603
[4]
Liu Z K, Jiang J, Zhou B, et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat Mater, 2014, 13, 677 doi: 10.1038/nmat3990
[5]
Jeon S, Zhou B B, Gyenis A, et al. Landau quantization and quasipartical interference in the three-dimensional Dirac semimetal Cd3As2. Nat Mater, 2014, 13, 851 doi: 10.1038/nmat4023
[6]
Neupane M, Xu S Y, Sankar R, et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat Commun, 2014, 5, 3786 doi: 10.1038/ncomms4786
[7]
Potter A C, Kimchi I, Vishwanath A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat Commun, 2014, 5, 5161 doi: 10.1038/ncomms6161
[8]
He L P, Hong X C, Dong J K, et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2. Phys Rev Lett, 2014, 113, 246402 doi: 10.1103/PhysRevLett.113.246402
[9]
Liang T, Gibson Q, Ali M N, et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat Mater, 2015, 14, 280 doi: 10.1038/nmat4143
[10]
Zhao Y F, Liu H W, Zhang C L, et al. Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2. Phys Rev X, 2015, 5, 031037 doi: 10.1103/PhysRevX.5.031037
[11]
Jiang Z J, Zhao D, Jin Z, et al. Angular-dependent phase factor of Shubnikov-de Haas oscillations in the Dirac semimetal Cd3As2. Phys Rev Lett, 2015, 115, 226401 doi: 10.1103/PhysRevLett.115.226401
[12]
Moll P J W, Nair N L, Helm T, et al. Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2. Nature, 2016, 535, 366 doi: 10.1038/nature18276
[13]
Zhang C, Narayan A, Lu S H, et al. Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2. Nat Commun, 2017, 8, 1272 doi: 10.1038/s41467-017-01438-y
[14]
Wang C M, Sun H P, Lu H Z, et al. 3D quantum Hall effect of Fermi arcs in topological semimetals. Phys Rev Lett, 2017, 119, 136806 doi: 10.1103/PhysRevLett.119.136806
[15]
Uchida M, Nakazawa Y, Nishihaya S, et al. Quantum Hall states observed in thin films of Dirac semimetal Cd3As2. Nat Commun, 2017, 8, 2274 doi: 10.1038/s41467-017-02423-1
[16]
Schumann T, Galletti L, Kealhofer D A, et al. Observation of the quantum Hall effect in confined films of the three-dimensional Dirac semimetal Cd3As2. Phys Rev Lett, 2018, 120, 016801 doi: 10.1103/PhysRevLett.120.016801
[17]
Goyal M, Galletti L, Salmani-Rezaie S, et al. Thickness dependence of the quantum Hall effect in films of the three-dimensional Dirac semimetal Cd3As2. APL Mater, 2018, 6, 026105 doi: 10.1063/1.5016866
[18]
Zhang C, Zhang Y, Yuan X, et al. Quantum Hall effect based on Weyl orbits in Cd3As2. Nature, 2019, 331, 565 doi: 10.1038/s41586-018-0798-3
[19]
Lin B C, Wang S, Wiedmann S, et al. Observation of an odd-integer quantum Hall effect from topological surface states in Cd3As2. Phys Rev Lett, 2019, 122, 036602 doi: 10.1103/PhysRevLett.122.036602
[20]
Zhang Y, Zhang C, Gao H X, et al. Large Hall angle-driven magneto-transport phenomena in topological Dirac semimetal Cd3As2. Appl Phys Lett, 2018, 113, 072104 doi: 10.1063/1.5037789
[21]
Nishihaya S, Uchida M, Nakazawa Y, et al. Quantized surface transport in topological Dirac semimetal films. Nat Commun, 2019, 10, 2564 doi: 10.1038/s41467-019-10499-0
[22]
Li C Z, Wang L X, Liu H W, et al. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nat Commun, 2015, 6, 10137 doi: 10.1038/ncomms10137
[23]
Li H, He H T, Lu H Z, et al. Negative magnetoresistance in Dirac semimetal Cd3As2. Nat Commun, 2016, 7, 10301 doi: 10.1038/ncomms10301
[24]
Aggarwal L, Gaurav A, Thakur G S, et al. Unconventional superconductivity at mesoscopic point contacts on the 3D Dirac semimetal Cd3As2. Nat Mater, 2016, 15, 32 doi: 10.1038/nmat4455
[25]
Wang H, Wang H C, Liu H W, et al. Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd3As2 crystals. Nat Mater, 2016, 15, 38 doi: 10.1038/nmat4456
[26]
Wang A Q, Li C Z, Li C, et al. 4π-periodic supercurrent from surface states in Cd3As2 nanowire-based Josephson junctions. Phys Rev Lett, 2018, 121, 237701 doi: 10.1103/PhysRevLett.121.237701
[27]
Huang C, Zhou B T, Zhang H Q, et al. Proximity-induced surface superconductivity in Dirac semimetal Cd3As2. Nat Commun, 2019, 10, 2217 doi: 10.1038/s41467-019-10233-w
[28]
Wang L X, Li C Z, Yu D P, et al. Aharonov-Bohm oscillations in Dirac semimetal Cd3As2 nanowires. Nat Commun, 2016, 7, 10769 doi: 10.1038/ncomms10769
[29]
Wang L X, Wang S, Li J G, et al. Universal conductance fluctuation in Dirac semimetal Cd3As2 nanowires. Phys Rev B, 2016, 94, 161402 doi: 10.1103/PhysRevB.94.161402
[30]
Wang S, Lin B C, Zheng W Z, et al. Fano interference between bulk and surface states of a Dirac semimetal Cd3As2 nanowire. Phys Rev Lett, 2018, 120, 257701 doi: 10.1103/PhysRevLett.120.257701
[31]
Zhou T, Zhang C, Zhang H S, et al. Enhanced thermoelectric properties of the Dirac semimeatl Cd3As2. Inorg Chem Front, 2016, 3, 1637 doi: 10.1039/C6QI00383D
[32]
Jia Z Z, Li C Z, Li X Q, et al. Thermoelectric signature of the chiral anomaly in Cd3As2. Nat Commun, 2016, 7, 13013 doi: 10.1038/ncomms13013
[33]
Zhu C H, Wang F Q, Meng Y F, et al. A robust and tunable mid-infrared optical switch enabled by bulk Dirac fermions. Nat Commun, 2017, 8, 14111 doi: 10.1038/ncomms14111
[34]
Wang Q S, Li C Z, Ge S F, et al. Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd3As2. Nano Lett, 2017, 17, 834 doi: 10.1021/acs.nanolett.6b04084
[35]
Liu Y W, Zhang C, Yuan X, et al. Gate-tunable quantum oscillations in ambipolar Cd3As2 thin films. NPG Asia Mater, 2015, 7, e221 doi: 10.1038/am.2015.110
[36]
Li C Z, Li J G, Wang L X, et al. Two-carrier transport induced Hall anomaly and large tunable magnetoresistance in Dirac semimetal Cd3As2 nanoplates. ACS Nano, 2016, 10, 6020 doi: 10.1021/acsnano.6b01568
[37]
Goyal M, Kim H, Schumann T, et al. Surface states of strained thin films of the Dirac semimetal Cd3As2. Phys Rev Mater, 2019, 3, 064204 doi: 10.1103/PhysRevMaterials.3.064204
[38]
Jin H, Dai Y, Ma Y D, et al. The electronic and magnetic properties of transition-metal element doped three-dimensional topological Dirac semimetal Cd3As2. J Mater Chem C, 2015, 3, 3547 doi: 10.1039/C4TC02609H
[39]
Liu Y W, Tiwari R, Narayan A, et al. Cr doping induced negative transverse magnetoresistance in Cd3As2 thin films. Phys Rev B, 2018, 97, 085303 doi: 10.1103/PhysRevB.97.085303
[40]
Yuan X, Chen P H, Zhang L Q, et al. Direct observation of landau level resonance and mass generation in Dirac semimetal Cd3As2 thin films. Nano Lett, 2017, 17, 2211 doi: 10.1021/acs.nanolett.6b04778
[41]
Sun Y, Meng Y F, Dai R H, et al. Slowing down photocarrier relaxation in Dirac semimetal Cd3As2 via Mn doping. Opt Lett, 2019, 44, 4103 doi: 10.1364/OL.44.004103
[42]
Zakhvalinskii V S, Nikulicheva T B, Lahderanta E, et al. Anomalous cyclotron mass dependence on the magnetic field and Berry’s phase in (Cd1– x yZn xMn y)3As2 solid solutions. J Phys Condens Matter, 2017, 29, 455701 doi: 10.1088/1361-648X/aa8bdb
[43]
Schumann T, Goyal M, Kim H, et al. Molecular beam epitaxy of Cd3As2 on a III–V substrate. APL Mater, 2016, 4, 126110 doi: 10.1063/1.4972999
[44]
Nakazawa Y, Uchida M, Nishihaya S, et al. Molecular beam epitaxy of three-dimensionally thick Dirac semimetal Cd3As2 films. APL Mater, 2019, 7, 071109 doi: 10.1063/1.5098529
[45]
Kealhofer D A, Kim H, Schumann T. Basal-plane growth of cadmium arsenide by molecular beam epitaxy. Phys Rev Mater, 2019, 3, 031201 doi: 10.1103/PhysRevMaterials.3.031201
[46]
Wang H L, Ma J L, Yu X Z, et al. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures. J Phys D, 2017, 50, 025003 doi: 10.1088/1361-6463/50/2/025003
[47]
Wang H L, Ma J L, Zhao J H. Giant modulation of magnetism in (Ga,Mn)As ultrathin films via electric field. J Semicond, 2019, 40, 092501 doi: 10.1088/1674-4926/40/9/092501
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3587 Times PDF downloads: 77 Times Cited by: 0 Times

    History

    Received: 29 March 2020 Revised: 22 April 2020 Online: Accepted Manuscript: 26 May 2020Uncorrected proof: 02 June 2020Published: 02 July 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hailong Wang, Jialin Ma, Qiqi Wei, Jianhua Zhao. Mn doping effects on the gate-tunable transport properties of Cd3As2 films epitaxied on GaAs[J]. Journal of Semiconductors, 2020, 41(7): 072903. doi: 10.1088/1674-4926/41/7/072903 H L Wang, J L Ma, Q Q Wei, J H Zhao, Mn doping effects on the gate-tunable transport properties of Cd3As2 films epitaxied on GaAs[J]. J. Semicond., 2020, 41(7): 072903. doi: 10.1088/1674-4926/41/7/072903.Export: BibTex EndNote
      Citation:
      Hailong Wang, Jialin Ma, Qiqi Wei, Jianhua Zhao. Mn doping effects on the gate-tunable transport properties of Cd3As2 films epitaxied on GaAs[J]. Journal of Semiconductors, 2020, 41(7): 072903. doi: 10.1088/1674-4926/41/7/072903

      H L Wang, J L Ma, Q Q Wei, J H Zhao, Mn doping effects on the gate-tunable transport properties of Cd3As2 films epitaxied on GaAs[J]. J. Semicond., 2020, 41(7): 072903. doi: 10.1088/1674-4926/41/7/072903.
      Export: BibTex EndNote

      Mn doping effects on the gate-tunable transport properties of Cd3As2 films epitaxied on GaAs

      doi: 10.1088/1674-4926/41/7/072903
      More Information
      • Corresponding author: jhzhao@semi.ac.cn
      • Received Date: 2020-03-29
      • Revised Date: 2020-04-22
      • Published Date: 2020-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return