ARTICLES

Gate-regulated transition temperatures for electron hopping behaviours in silicon junctionless nanowire transistors

Xinyu Wu1, 2, Weihua Han1, 2, , Xiaosong Zhao1, 2, Yangyan Guo1, 2, Xiaodi Zhang1, 2 and Fuhua Yang1, 2, 3,

+ Author Affiliations

 Corresponding author: Weihua Han, Email: weihua@semi.ac.cn; Fuhua Yang, Email: fhyang@semi.ac.cn

PDF

Turn off MathJax

Abstract: We investigate gate-regulated transition temperatures for electron hopping behaviours through discrete ionized dopant atoms in silicon junctionless nanowire transistors. We demonstrate that the localization length of the wave function in the spatial distribution is able to be manipulated by the gate electric field. The transition temperatures regulated as the function of the localization length and the density of states near the Fermi energy level allow us to understand the electron hopping behaviours under the influence of thermal activation energy and Coulomb interaction energy. This is useful for future quantum information processing by single dopant atoms in silicon.

Key words: silicon junctionless nanowire transistordiscrete dopant atomsgate regulationtransition temperatures



[1]
Koenraad P M, Flatté M E. Single dopants in semiconductors. Nat Mater, 2011, 10, 91 doi: 10.1038/nmat2940
[2]
Lansbergen G P, Rahman R, Wellard C J, et al. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nat Phys, 2008, 4, 656 doi: 10.1038/nphys994
[3]
Fresch B, Bocquel J, Rogge S, et al. A probabilistic finite state logic machine realized experimentally on a single dopant atom. Nano Lett, 2017, 17, 1846 doi: 10.1021/acs.nanolett.6b05149
[4]
Hollenberg L C L, Dzurak A, Wellard C J, et al. Charged-based quantum computing using single donors in semiconductors. Phys Rev B, 2004, 69, 113301 doi: 10.1103/PhysRevB.69.113301
[5]
Ladd T D, Jelezko F, Laflamme R, et al. Quantum computers. Nature, 2010, 464, 45 doi: 10.1038/nature08812
[6]
Fuechsle M, Miwa J A, Mahapatra S, et al. A single-atom transistor. Nat Nanotechnol, 2012, 7, 242 doi: 10.1038/nnano.2012.21
[7]
Prati E, Hori M, Guagliardo F, et al. Anderson–Mott transition in arrays of a few dopant atoms in a silicon transistor. Nat Nanotechnol, 2012, 7, 443 doi: 10.1038/nnano.2012.94
[8]
Dagesyan S A, Shorokhov V V, Presnov D E, et al. Sequential reduction of the silicon single-electron transistor structure to atomic scale. Nanotechnology, 2017, 28, 225304 doi: 10.1088/1361-6528/aa6dea
[9]
Ryu H, Lee S, Fuechsle M, et al. A tight-binding study of single-atom transistors. Small, 2015, 3, 374 doi: 10.1002/smll.201400724
[10]
Tabe M, Moraru D, Ligowski M, et al. Single-electron transport through single dopants in a dopant-rich environment. Phys Rev Lett, 2010, 105, 016803 doi: 10.1103/PhysRevLett.105.016803
[11]
Li Y, Yu S, Hwang J, et al. discrete dopant fluctuations in 20-nm/15-nm-gate planar CMOS. IEEE Trans Electron Devices, 2008, 55(6), 1449 doi: 10.1109/TED.2008.921991
[12]
Akhavan N D, Ferain I, Yu R, et al. Influence of discrete dopant on quantum transport in silicon nanowire transistors. Solid-State Electron, 2012, 70, 92 doi: 10.1016/j.sse.2011.11.017
[13]
Colinge J P, Lee C W, Afzalian A, et al. Nanowire transistors without junctions. Nat Nanotechnol, 2010, 5, 225 doi: 10.1038/nnano.2010.15
[14]
Ueda A, Luisier M, Sano N. Enhanced impurity-limited mobility in ultra-scaled Si nanowire junctionless field-effect transistors. Appl Phys Lett, 2015, 107, 253501 doi: 10.1063/1.4937901
[15]
Uddin W, Georgiev Y M, Maity S, et al. Dopant induced single electron tunneling within the sub-bands of single silicon NW tri-gate junctionless n-MOSFET. J Phys D, 2017, 50, 365104 doi: 10.1088/1361-6463/aa7eb9
[16]
Mott N F. Conduction in non-crystalline materials. New York: Clarendon Press, 1987
[17]
Efros A L, Shklovskii B I. Electronic properties of doped semiconductors. Berlin: Springer- Verlag, 1984
[18]
Efros A L, Shklovskii B I. Coulomb gap and low-temperature conductivity of disordered systems. J Phy C, 1975, 8, 49 doi: 10.1088/0022-3719/8/4/003
[19]
Wang H, Han W, Li X, et al. Low-temperature study of array of dopant atoms on transport behaviors in silicon junctionless nanowire transistor. J Appl Phys, 2014, 116, 124505 doi: 10.1063/1.4896586
[20]
Guo Y Y, Han W H, Zhao X S, et al. Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in silicon junctionless nanowire transistors. Chin Phys B, 2019, 28, 107303 doi: 10.1088/1674-1056/ab3e68
[21]
Wang H, Han W, Ma L, et al. Current-voltage spectroscopy of dopant-induced quantum-dots in heavily n-doped junctionless nanowire transistors. Appl Phys Lett, 2014, 104, 133509 doi: 10.1063/1.4870512
[22]
Büch H, Fuechsle M, Baker W, et al. Quantum dot spectroscopy using a single phosphorus donor. Phys Rev B, 2015, 92, 235309 doi: 10.1103/PhysRevB.92.235309
[23]
Tettamanzi G C, Hile S J, House M G, et al. Probing the quantum states of a single atom transistor at microwave frequencies. ACS Nano, 2016, 11, 2444 doi: 10.1021/acsnano.6b06362
[24]
Tyszka K, Moraru D, Samanta A, et al. Comparative study of donor-induced quantum dots in Si nano-channels by singleelectron transport characterization and Kelvin probe force microscopy. J Appl Phys, 2015, 117, 244307 doi: 10.1063/1.4923229
[25]
Moraru D, Samanta A, Tyszka K, et al. Tunneling in systems of coupled dopant-atoms in silicon nano-devices. Nanoscale Res Lett, 2015, 10, 372 doi: 10.1186/s11671-015-1076-z
Fig. 1.  (Color online) (a) Schematic structure of the silicon JNT. (b) Top-view SEM images of the silicon JNT after gate formation.

Fig. 2.  (Color online) Drain current Ids versus gate voltage Vg with Vds = 10 mV at different temperatures (upper part) and corresponding transconductance gmVg curves (lower part).

Fig. 3.  (Color online) (a) Barrier height of the device channel is extracted by fitting the thermally activated current. The conduction band edge EC reaches the Fermi level EF at 2.40 V. Inset: transconductance gmVg curves at low temperature. (b) Locally amplified transconductance gmVg curves before gate voltage 2.40 V, which are successively shifted for clarify.

Fig. 4.  (Color online) Arrhenius plots of the conductance G1, G2, G3, and G4 for each group. The inset: close-up of the curves around 75 K.

Fig. 5.  (Color online) (a) The gate-voltage regulated transition temperature TA and TC. (b) The gate-voltage dependence of the density of state and the localization length.

Fig. 6.  (Color online) The behaviour of electron hopping (a) from M-VRH to NNH in and (b) from ES-VRH to M-VRH in.

[1]
Koenraad P M, Flatté M E. Single dopants in semiconductors. Nat Mater, 2011, 10, 91 doi: 10.1038/nmat2940
[2]
Lansbergen G P, Rahman R, Wellard C J, et al. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nat Phys, 2008, 4, 656 doi: 10.1038/nphys994
[3]
Fresch B, Bocquel J, Rogge S, et al. A probabilistic finite state logic machine realized experimentally on a single dopant atom. Nano Lett, 2017, 17, 1846 doi: 10.1021/acs.nanolett.6b05149
[4]
Hollenberg L C L, Dzurak A, Wellard C J, et al. Charged-based quantum computing using single donors in semiconductors. Phys Rev B, 2004, 69, 113301 doi: 10.1103/PhysRevB.69.113301
[5]
Ladd T D, Jelezko F, Laflamme R, et al. Quantum computers. Nature, 2010, 464, 45 doi: 10.1038/nature08812
[6]
Fuechsle M, Miwa J A, Mahapatra S, et al. A single-atom transistor. Nat Nanotechnol, 2012, 7, 242 doi: 10.1038/nnano.2012.21
[7]
Prati E, Hori M, Guagliardo F, et al. Anderson–Mott transition in arrays of a few dopant atoms in a silicon transistor. Nat Nanotechnol, 2012, 7, 443 doi: 10.1038/nnano.2012.94
[8]
Dagesyan S A, Shorokhov V V, Presnov D E, et al. Sequential reduction of the silicon single-electron transistor structure to atomic scale. Nanotechnology, 2017, 28, 225304 doi: 10.1088/1361-6528/aa6dea
[9]
Ryu H, Lee S, Fuechsle M, et al. A tight-binding study of single-atom transistors. Small, 2015, 3, 374 doi: 10.1002/smll.201400724
[10]
Tabe M, Moraru D, Ligowski M, et al. Single-electron transport through single dopants in a dopant-rich environment. Phys Rev Lett, 2010, 105, 016803 doi: 10.1103/PhysRevLett.105.016803
[11]
Li Y, Yu S, Hwang J, et al. discrete dopant fluctuations in 20-nm/15-nm-gate planar CMOS. IEEE Trans Electron Devices, 2008, 55(6), 1449 doi: 10.1109/TED.2008.921991
[12]
Akhavan N D, Ferain I, Yu R, et al. Influence of discrete dopant on quantum transport in silicon nanowire transistors. Solid-State Electron, 2012, 70, 92 doi: 10.1016/j.sse.2011.11.017
[13]
Colinge J P, Lee C W, Afzalian A, et al. Nanowire transistors without junctions. Nat Nanotechnol, 2010, 5, 225 doi: 10.1038/nnano.2010.15
[14]
Ueda A, Luisier M, Sano N. Enhanced impurity-limited mobility in ultra-scaled Si nanowire junctionless field-effect transistors. Appl Phys Lett, 2015, 107, 253501 doi: 10.1063/1.4937901
[15]
Uddin W, Georgiev Y M, Maity S, et al. Dopant induced single electron tunneling within the sub-bands of single silicon NW tri-gate junctionless n-MOSFET. J Phys D, 2017, 50, 365104 doi: 10.1088/1361-6463/aa7eb9
[16]
Mott N F. Conduction in non-crystalline materials. New York: Clarendon Press, 1987
[17]
Efros A L, Shklovskii B I. Electronic properties of doped semiconductors. Berlin: Springer- Verlag, 1984
[18]
Efros A L, Shklovskii B I. Coulomb gap and low-temperature conductivity of disordered systems. J Phy C, 1975, 8, 49 doi: 10.1088/0022-3719/8/4/003
[19]
Wang H, Han W, Li X, et al. Low-temperature study of array of dopant atoms on transport behaviors in silicon junctionless nanowire transistor. J Appl Phys, 2014, 116, 124505 doi: 10.1063/1.4896586
[20]
Guo Y Y, Han W H, Zhao X S, et al. Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in silicon junctionless nanowire transistors. Chin Phys B, 2019, 28, 107303 doi: 10.1088/1674-1056/ab3e68
[21]
Wang H, Han W, Ma L, et al. Current-voltage spectroscopy of dopant-induced quantum-dots in heavily n-doped junctionless nanowire transistors. Appl Phys Lett, 2014, 104, 133509 doi: 10.1063/1.4870512
[22]
Büch H, Fuechsle M, Baker W, et al. Quantum dot spectroscopy using a single phosphorus donor. Phys Rev B, 2015, 92, 235309 doi: 10.1103/PhysRevB.92.235309
[23]
Tettamanzi G C, Hile S J, House M G, et al. Probing the quantum states of a single atom transistor at microwave frequencies. ACS Nano, 2016, 11, 2444 doi: 10.1021/acsnano.6b06362
[24]
Tyszka K, Moraru D, Samanta A, et al. Comparative study of donor-induced quantum dots in Si nano-channels by singleelectron transport characterization and Kelvin probe force microscopy. J Appl Phys, 2015, 117, 244307 doi: 10.1063/1.4923229
[25]
Moraru D, Samanta A, Tyszka K, et al. Tunneling in systems of coupled dopant-atoms in silicon nano-devices. Nanoscale Res Lett, 2015, 10, 372 doi: 10.1186/s11671-015-1076-z
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3563 Times PDF downloads: 39 Times Cited by: 0 Times

    History

    Received: 06 March 2020 Revised: 02 April 2020 Online: Uncorrected proof: 20 May 2020Accepted Manuscript: 20 May 2020Published: 02 July 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xinyu Wu, Weihua Han, Xiaosong Zhao, Yangyan Guo, Xiaodi Zhang, Fuhua Yang. Gate-regulated transition temperatures for electron hopping behaviours in silicon junctionless nanowire transistors[J]. Journal of Semiconductors, 2020, 41(7): 072905. doi: 10.1088/1674-4926/41/7/072905 X Y Wu, W H Han, X S Zhao, Y Y Guo, X D Zhang, F H Yang, Gate-regulated transition temperatures for electron hopping behaviours in silicon junctionless nanowire transistors[J]. J. Semicond., 2020, 41(7): 072905. doi: 10.1088/1674-4926/41/7/072905.Export: BibTex EndNote
      Citation:
      Xinyu Wu, Weihua Han, Xiaosong Zhao, Yangyan Guo, Xiaodi Zhang, Fuhua Yang. Gate-regulated transition temperatures for electron hopping behaviours in silicon junctionless nanowire transistors[J]. Journal of Semiconductors, 2020, 41(7): 072905. doi: 10.1088/1674-4926/41/7/072905

      X Y Wu, W H Han, X S Zhao, Y Y Guo, X D Zhang, F H Yang, Gate-regulated transition temperatures for electron hopping behaviours in silicon junctionless nanowire transistors[J]. J. Semicond., 2020, 41(7): 072905. doi: 10.1088/1674-4926/41/7/072905.
      Export: BibTex EndNote

      Gate-regulated transition temperatures for electron hopping behaviours in silicon junctionless nanowire transistors

      doi: 10.1088/1674-4926/41/7/072905
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return