NEWS AND VIEWS

All-optical switching based on self-assembled halide perovskite microwires

Qing Zhang1, and Jun Zhang2, 3,

+ Author Affiliations

 Corresponding author: Qing Zhang, Q_zhang@pku.edu.cn; Jun Zhang, zhangjwill@semi.ac.cn

PDF

Turn off MathJax



[1]
Dawes A M C, Illing L, Clark S M, et al. All-optical switching in rubidium vapor. Science, 2005, 308, 672 doi: 10.1126/science.1110151
[2]
Tiecke T G, Thompson J D, de Leon N P, et al. Nanophotonic quantum phase switch with a single atom. Nature, 2014, 508, 241 doi: 10.1038/nature13188
[3]
Volz T, Reinhard A, Winger M, et al. Ultrafast all-optical switching by single photons. Nat Photonics, 2012, 6, 605 doi: 10.1038/nphoton.2012.181
[4]
Kasprzak J, Richard M, Kundermann S, et al. Bose–Einstein condensation of exciton polaritons. Nature, 2006, 443, 409 doi: 10.1038/nature05131
[5]
Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation. Rev Mod Phys, 2010, 82, 1489 doi: 10.1103/RevModPhys.82.1489
[6]
Feng J, Wang J, Fieramosca A, et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Sci Adv, 2021, 7, eabj6627 doi: 10.1126/sciadv.abj6627
[7]
Liew T C, Kavokin A V, Shelykh I A. Optical circuits based on polariton neurons in semiconductor microcavities. Phys Rev Lett, 2008, 101, 016402 doi: 10.1103/PhysRevLett.101.016402
[8]
Amo A, Liew T C H, Adrados C, et al. Exciton-polariton spin switches. Nat Photonics, 2010, 4, 361 doi: 10.1038/nphoton.2010.79
[9]
Gao T, Eldridge P S, Liew T C H, et al. Polariton condensate transistor switch. Phys Rev B, 2012, 85, 235102 doi: 10.1103/PhysRevB.85.235102
[10]
Nguyen H S, Vishnevsky D, Sturm C, et al. Realization of a double-barrier resonant tunneling diode for cavity polaritons. Phys Rev Lett, 2013, 110, 236601 doi: 10.1103/PhysRevLett.110.236601
[11]
Sturm C, Tanese D, Nguyen H S, et al. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer. Nat Commun, 2014, 5, 3278 doi: 10.1038/ncomms4278
[12]
Ballarini D, De Giorgi M, Cancellieri E, et al. All-optical polariton transistor. Nat Commun, 2013, 4, 1 doi: 10.1038/ncomms2734
[13]
Zasedatelev A V, Baranikov A V, Urbonas D, et al. A room-temperature organic polariton transistor. Nat Photonics, 2019, 13, 378 doi: 10.1038/s41566-019-0392-8
[14]
Su R, Diederichs C, Wang J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 2017, 17, 3982 doi: 10.1021/acs.nanolett.7b01956
[15]
Su R, Wang J, Zhao J X, et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci Adv, 2018, 4, eaau0244 doi: 10.1126/sciadv.aau0244
[16]
Su R, Ghosh S, Wang J, et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat Phys, 2020, 16, 301 doi: 10.1038/s41567-019-0764-5
[17]
Wang J, Xu H W, Su R, et al. Spontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities. Light: Sci Appl, 2021, 10, 1 doi: 10.1038/s41377-020-00435-z
[18]
Wu J Q, Ghosh S, Su R, et al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities. Nano Lett, 2021, 21, 3120 doi: 10.1021/acs.nanolett.1c00283
Fig. 1.  (Color online) (a) Scheme of all-optical switching based on interacting and propagating exciton polaritons in perovskite microwires. (b) Scanning electron microscopy image of CsPbBr3 microwire arrays. Scale bar, 10 μm. (c–e) Real-space PL spectra of optical switching at different delay time Δt. Figures are adapted from Ref. [6] with permission. Copyright 2021, American Association for the Advancement of Science.

[1]
Dawes A M C, Illing L, Clark S M, et al. All-optical switching in rubidium vapor. Science, 2005, 308, 672 doi: 10.1126/science.1110151
[2]
Tiecke T G, Thompson J D, de Leon N P, et al. Nanophotonic quantum phase switch with a single atom. Nature, 2014, 508, 241 doi: 10.1038/nature13188
[3]
Volz T, Reinhard A, Winger M, et al. Ultrafast all-optical switching by single photons. Nat Photonics, 2012, 6, 605 doi: 10.1038/nphoton.2012.181
[4]
Kasprzak J, Richard M, Kundermann S, et al. Bose–Einstein condensation of exciton polaritons. Nature, 2006, 443, 409 doi: 10.1038/nature05131
[5]
Deng H, Haug H, Yamamoto Y. Exciton-polariton Bose-Einstein condensation. Rev Mod Phys, 2010, 82, 1489 doi: 10.1103/RevModPhys.82.1489
[6]
Feng J, Wang J, Fieramosca A, et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Sci Adv, 2021, 7, eabj6627 doi: 10.1126/sciadv.abj6627
[7]
Liew T C, Kavokin A V, Shelykh I A. Optical circuits based on polariton neurons in semiconductor microcavities. Phys Rev Lett, 2008, 101, 016402 doi: 10.1103/PhysRevLett.101.016402
[8]
Amo A, Liew T C H, Adrados C, et al. Exciton-polariton spin switches. Nat Photonics, 2010, 4, 361 doi: 10.1038/nphoton.2010.79
[9]
Gao T, Eldridge P S, Liew T C H, et al. Polariton condensate transistor switch. Phys Rev B, 2012, 85, 235102 doi: 10.1103/PhysRevB.85.235102
[10]
Nguyen H S, Vishnevsky D, Sturm C, et al. Realization of a double-barrier resonant tunneling diode for cavity polaritons. Phys Rev Lett, 2013, 110, 236601 doi: 10.1103/PhysRevLett.110.236601
[11]
Sturm C, Tanese D, Nguyen H S, et al. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer. Nat Commun, 2014, 5, 3278 doi: 10.1038/ncomms4278
[12]
Ballarini D, De Giorgi M, Cancellieri E, et al. All-optical polariton transistor. Nat Commun, 2013, 4, 1 doi: 10.1038/ncomms2734
[13]
Zasedatelev A V, Baranikov A V, Urbonas D, et al. A room-temperature organic polariton transistor. Nat Photonics, 2019, 13, 378 doi: 10.1038/s41566-019-0392-8
[14]
Su R, Diederichs C, Wang J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 2017, 17, 3982 doi: 10.1021/acs.nanolett.7b01956
[15]
Su R, Wang J, Zhao J X, et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci Adv, 2018, 4, eaau0244 doi: 10.1126/sciadv.aau0244
[16]
Su R, Ghosh S, Wang J, et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat Phys, 2020, 16, 301 doi: 10.1038/s41567-019-0764-5
[17]
Wang J, Xu H W, Su R, et al. Spontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities. Light: Sci Appl, 2021, 10, 1 doi: 10.1038/s41377-020-00435-z
[18]
Wu J Q, Ghosh S, Su R, et al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities. Nano Lett, 2021, 21, 3120 doi: 10.1021/acs.nanolett.1c00283
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1385 Times PDF downloads: 61 Times Cited by: 0 Times

    History

    Received: 13 December 2021 Revised: Online: Accepted Manuscript: 14 December 2021Uncorrected proof: 21 December 2021Published: 04 January 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Qing Zhang, Jun Zhang. All-optical switching based on self-assembled halide perovskite microwires[J]. Journal of Semiconductors, 2022, 43(1): 010401. doi: 10.1088/1674-4926/43/1/010401 Q Zhang, J Zhang, All-optical switching based on self-assembled halide perovskite microwires[J]. J. Semicond., 2022, 43(1): 010401. doi: 10.1088/1674-4926/43/1/010401.Export: BibTex EndNote
      Citation:
      Qing Zhang, Jun Zhang. All-optical switching based on self-assembled halide perovskite microwires[J]. Journal of Semiconductors, 2022, 43(1): 010401. doi: 10.1088/1674-4926/43/1/010401

      Q Zhang, J Zhang, All-optical switching based on self-assembled halide perovskite microwires[J]. J. Semicond., 2022, 43(1): 010401. doi: 10.1088/1674-4926/43/1/010401.
      Export: BibTex EndNote

      All-optical switching based on self-assembled halide perovskite microwires

      doi: 10.1088/1674-4926/43/1/010401
      More Information
      • Qing Zhang:is currently an assistant professor in School of Materials Science and Engineering at Peking University, China. She has obtained Bachelor degree from University of Science and Technology of China and Ph.D. degree from Tsinghua University. Her research directions include light-matter interaction and optical spectroscopies of nanomaterials
      • Jun Zhang:is a professor in the Institute of Semiconductors (CAS). His current researches focus on light–matter interactions in semiconductor materials including Raman and Brillouin scattering, laser cooling in semiconductors, and color centers in semiconductors
      • Corresponding author: Q_zhang@pku.edu.cnzhangjwill@semi.ac.cn
      • Received Date: 2021-12-13
      • Published Date: 2022-01-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return