ARTICLES

Emitter layer optimization in heterojunction bifacial silicon solar cells

Adnan Shariah and Feda Mahasneh

+ Author Affiliations

 Corresponding author: Adnan Shariah, shariah@just.edu.jo

PDF

Turn off MathJax

Abstract: Silicon solar cells continue to dominate the market, due to the abundance of silicon and their acceptable efficiency. The heterojunction with intrinsic thin layer (HIT) structure is now the dominant technology. Increasing the efficiency of these cells could expand the development choices for HIT solar cells. We presented a detailed investigation of the emitter a-Si:H(n) layer of a p-type bifacial HIT solar cell in terms of characteristic parameters which include layer doping concentration, thickness, band gap width, electron affinity, hole mobility, and so on. Solar cell composition: (ZnO/nc-Si:H(n)/a-Si:H(i)/c-Si(p)/a-Si:H(i)/nc-Si:H(p)/ZnO). The results reveal optimal values for the investigated parameters, for which the highest computed efficiency is 26.45% when lighted from the top only and 21.21% when illuminated from the back only.

Key words: HIT solar cellsbifacial solar cellsnano-crystalline silicon filmsgradient dopingparameter optimization



[1]
Wakisaka K, Taguchi M, Sawada T, et al. More than 16% solar cells with a new ‘HIT’ (doped a-Si/nondoped a-Si/crystalline Si) structure. The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference, 1991, 887
[2]
Sawada T, Terada N, Tsuge S, et al. High-efficiency a-Si/c-Si heterojunction solar cell. Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion, 1994, 2, 1219 doi: 10.1109/WCPEC.1994.519952
[3]
Mishima T, Taguchi M, Sakata H, et al. Development status of high-efficiency HIT solar cells. Sol Energy Mater Sol Cells, 2011, 95, 18 doi: 10.1016/j.solmat.2010.04.030
[4]
Gorle D K, Chander N. A simulation approach for device structure and thickness optimization of silicon heterojunction solar cells featuring TiO2 as carrier-selective contact. Mater Today Proc, 2021, 39, 1916 doi: 10.1016/j.matpr.2020.08.312
[5]
Champory R, Mandorlo F, Seassal C, et al. Influence of patterning the TCO layer on the series resistance of thin film HIT solar cells. EPJ Photovolt, 2017, 8, 80101 doi: 10.1051/epjpv/2016006
[6]
Li S, Pomaska M, Lambertz A, et al. Transparent-conductive-oxide-free front contacts for high-efficiency silicon heterojunction solar cells. Joule, 2021, 5, 1535 doi: 10.1016/j.joule.2021.04.004
[7]
Dwivedi N, Kumar S, Bisht A, et al. Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve ~27% efficiency. Sol Energy, 2013, 88, 31 doi: 10.1016/j.solener.2012.11.008
[8]
Libal J, Kopecek R. Bifacial Photovoltaics: Technology, applications and economics. Institution of Engineering and Technology, 2018
[9]
Liang T S, Pravettoni M, Deline C, et al. A review of crystalline silicon bifacial photovoltaic performance characterisation and simulation. Energy Environ Sci, 2019, 12, 116 doi: 10.1039/C8EE02184H
[10]
Liu J, Huang S H, He L. Simulation of a high-efficiency silicon-based heterojunction solar cell. J Semicond, 2015, 36, 044010 doi: 10.1088/1674-4926/36/4/044010
[11]
Oppong-Antwi L, Huang S H, Li Q N, et al. Influence of defect states and fixed charges located at the a-Si:H/c-Si interface on the performance of HIT solar cells. Sol Energy, 2017, 141, 222 doi: 10.1016/j.solener.2016.11.049
[12]
Varache R, Leendertz C, Gueunier-Farret M E, et al. Investigation of selective junctions using a newly developed tunnel current model for solar cell applications. Sol Energy Mater Sol Cells, 2015, 141, 14 doi: 10.1016/j.solmat.2015.05.014
[13]
Kanneboina V. The simulated performance of c-Si/a-Si:H heterojunction solar cells with nc-Si:H, µc-Si:H, a-SiC:H, and a-SiGe:H emitter layers. J Comput Electron, 2021, 20, 344 doi: 10.1007/s10825-020-01626-y
[14]
Azzemou F, Rached D, Rahal W. Optimisation of emitter properties for silicon heterojunction solar cell ITO/pa-Si:H/ia-Si:H/nc-Si/BSF/Al. Optik, 2020, 217, 164802 doi: 10.1016/j.ijleo.2020.164802
[15]
Huang H B, Tian G Y, Zhou L, et al. Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost. Chin Phys B, 2018, 27, 038502 doi: 10.1088/1674-1056/27/3/038502
[16]
Kim S, Park H, Pham D P, et al. Design of front emitter layer for improving efficiency in silicon heterojunction solar cells via numerical calculations. Optik, 2021, 235, 166580 doi: 10.1016/j.ijleo.2021.166580
[17]
Sathya P, Natarajan R. Design and optimization of amorphous based on highly efficient HIT solar cell. Appl Sol Energy, 2018, 54, 77 doi: 10.3103/S0003701X18020123
[18]
Yao Y, Xu X Y, Zhang X M, et al. Enhanced efficiency in bifacial HIT solar cells by gradient doping with AFORS-HET simulation. Mater Sci Semicond Process, 2018, 77, 16 doi: 10.1016/j.mssp.2018.01.009
[19]
Honsberg C, Bowden S. Photovoltaics education website. PV Education, 2019
Fig. 1.  (Color online) Structure of the proposed bifacial HIT solar cell.

Fig. 2.  (Color online) Density of states diagram of the emitter layer.

Fig. 3.  (Color online) Effect of doping concentration.

Fig. 4.  (Color online) Effect of gradient doping concentration.

Fig. 5.  (Color online) Variation of emitter thickness.

Fig. 6.  (Color online) Effect of electron affinity.

Fig. 7.  (Color online) Effect of emitter's band gap energy.

Fig. 8.  (Color online) Effect of hole's mobility.

Fig. 9.  (Color online) Effect of electron's mobility.

Fig. 10.  (Color online) Effect of operation temperature.

Fig. 11.  (Color online) JV curves when the solar cell is illuminated from top side and/or rear side.

Table 1.   Simulation data used in AFORS.

Parameter/layer(n++) nc-Si:H
emitter
(i) a-Si:H
buffer
(p++) nc-Si:H
BSF
(p) c-Si
wafer
Layer thickness (nm)(1–10) × 10–72 × 10–741.8 × 105
Dielectric constant11.911.911.911.9
Electron affinity (eV)3.4–4.23.903.954.05
Band gap (eV )1.4–21.741.3–21.12
Conduction band density (1020 cm3)2.6 2.6 2.6 0.329
Valence band density (1020 cm3)2.62.6 2.6 0.3104
Effective electron (hole) mobility (cm2/(V·s))50 (20)22 (2)50 (20)1009.4 (406.8)
Doping concentration acceptors (1017 cm3)0050000.12
Doping concentration donators (1020 cm3)5000
Electron (hole) thermal velocity (107 cm/s)1 (1 )1 (1)1 (1)1 (1)
Layer density (g/cm3)2.3292.3292.3292.329
Auger electron (hole) recombination coefficient (10–31 cm6/s)0 (0)0 (0)0 (0)2.9 (0.99)
Band to band recombination coefficient (10–15 cm3/s)0009.5
Electron (hole) thermal cross section (10–16 cm2)7 (7)7 (7)7 (7)
Total (specific) trap density (1020 cm3 )1.36 (20)0.64 (18)16 (20)
Electron (hole) thermal cross section (10–16 cm2)7 (7)7 (7)7 (7)
Total (specific) trap density (1020 cm3 )1.88 (20)0.94 (18.8)2.4 (20)
Electron (hole) thermal cross section (10–15 cm2)3 (30)3 (30)3 (30)
Total (specific) trap density (1017 cm3)690 (1300)0.05 (0.138)689 (1300)
Energy of distribution (characteristic E) (eV)0.6 (0.21)0.82 (0.144)1.2 (0.21)
Electron (hole) thermal cross section (10–14 cm2)3 (0.3)3 (0.3)3 (0.3)1 (1)
Total (specific) trap density (1017 cm3 )689 (1300 )0.05 (0.138)689 (1300)108 (108)
Energy of distribution (characteristic E) (eV)0.7 (0.21)0.92 (0.144)1.1 (0.21)0.56
DownLoad: CSV
[1]
Wakisaka K, Taguchi M, Sawada T, et al. More than 16% solar cells with a new ‘HIT’ (doped a-Si/nondoped a-Si/crystalline Si) structure. The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference, 1991, 887
[2]
Sawada T, Terada N, Tsuge S, et al. High-efficiency a-Si/c-Si heterojunction solar cell. Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion, 1994, 2, 1219 doi: 10.1109/WCPEC.1994.519952
[3]
Mishima T, Taguchi M, Sakata H, et al. Development status of high-efficiency HIT solar cells. Sol Energy Mater Sol Cells, 2011, 95, 18 doi: 10.1016/j.solmat.2010.04.030
[4]
Gorle D K, Chander N. A simulation approach for device structure and thickness optimization of silicon heterojunction solar cells featuring TiO2 as carrier-selective contact. Mater Today Proc, 2021, 39, 1916 doi: 10.1016/j.matpr.2020.08.312
[5]
Champory R, Mandorlo F, Seassal C, et al. Influence of patterning the TCO layer on the series resistance of thin film HIT solar cells. EPJ Photovolt, 2017, 8, 80101 doi: 10.1051/epjpv/2016006
[6]
Li S, Pomaska M, Lambertz A, et al. Transparent-conductive-oxide-free front contacts for high-efficiency silicon heterojunction solar cells. Joule, 2021, 5, 1535 doi: 10.1016/j.joule.2021.04.004
[7]
Dwivedi N, Kumar S, Bisht A, et al. Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve ~27% efficiency. Sol Energy, 2013, 88, 31 doi: 10.1016/j.solener.2012.11.008
[8]
Libal J, Kopecek R. Bifacial Photovoltaics: Technology, applications and economics. Institution of Engineering and Technology, 2018
[9]
Liang T S, Pravettoni M, Deline C, et al. A review of crystalline silicon bifacial photovoltaic performance characterisation and simulation. Energy Environ Sci, 2019, 12, 116 doi: 10.1039/C8EE02184H
[10]
Liu J, Huang S H, He L. Simulation of a high-efficiency silicon-based heterojunction solar cell. J Semicond, 2015, 36, 044010 doi: 10.1088/1674-4926/36/4/044010
[11]
Oppong-Antwi L, Huang S H, Li Q N, et al. Influence of defect states and fixed charges located at the a-Si:H/c-Si interface on the performance of HIT solar cells. Sol Energy, 2017, 141, 222 doi: 10.1016/j.solener.2016.11.049
[12]
Varache R, Leendertz C, Gueunier-Farret M E, et al. Investigation of selective junctions using a newly developed tunnel current model for solar cell applications. Sol Energy Mater Sol Cells, 2015, 141, 14 doi: 10.1016/j.solmat.2015.05.014
[13]
Kanneboina V. The simulated performance of c-Si/a-Si:H heterojunction solar cells with nc-Si:H, µc-Si:H, a-SiC:H, and a-SiGe:H emitter layers. J Comput Electron, 2021, 20, 344 doi: 10.1007/s10825-020-01626-y
[14]
Azzemou F, Rached D, Rahal W. Optimisation of emitter properties for silicon heterojunction solar cell ITO/pa-Si:H/ia-Si:H/nc-Si/BSF/Al. Optik, 2020, 217, 164802 doi: 10.1016/j.ijleo.2020.164802
[15]
Huang H B, Tian G Y, Zhou L, et al. Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost. Chin Phys B, 2018, 27, 038502 doi: 10.1088/1674-1056/27/3/038502
[16]
Kim S, Park H, Pham D P, et al. Design of front emitter layer for improving efficiency in silicon heterojunction solar cells via numerical calculations. Optik, 2021, 235, 166580 doi: 10.1016/j.ijleo.2021.166580
[17]
Sathya P, Natarajan R. Design and optimization of amorphous based on highly efficient HIT solar cell. Appl Sol Energy, 2018, 54, 77 doi: 10.3103/S0003701X18020123
[18]
Yao Y, Xu X Y, Zhang X M, et al. Enhanced efficiency in bifacial HIT solar cells by gradient doping with AFORS-HET simulation. Mater Sci Semicond Process, 2018, 77, 16 doi: 10.1016/j.mssp.2018.01.009
[19]
Honsberg C, Bowden S. Photovoltaics education website. PV Education, 2019
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 512 Times PDF downloads: 43 Times Cited by: 0 Times

    History

    Received: 28 July 2022 Revised: 25 August 2022 Online: Uncorrected proof: 26 September 2022Published: 02 December 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Adnan Shariah, Feda Mahasneh. Emitter layer optimization in heterojunction bifacial silicon solar cells[J]. Journal of Semiconductors, 2022, 43(12): 122701. doi: 10.1088/1674-4926/43/12/122701 A Shariah, F Mahasneh. Emitter layer optimization in heterojunction bifacial silicon solar cells[J]. J. Semicond, 2022, 43(12): 122701. doi: 10.1088/1674-4926/43/12/122701Export: BibTex EndNote
      Citation:
      Adnan Shariah, Feda Mahasneh. Emitter layer optimization in heterojunction bifacial silicon solar cells[J]. Journal of Semiconductors, 2022, 43(12): 122701. doi: 10.1088/1674-4926/43/12/122701

      A Shariah, F Mahasneh. Emitter layer optimization in heterojunction bifacial silicon solar cells[J]. J. Semicond, 2022, 43(12): 122701. doi: 10.1088/1674-4926/43/12/122701
      Export: BibTex EndNote

      Emitter layer optimization in heterojunction bifacial silicon solar cells

      doi: 10.1088/1674-4926/43/12/122701
      More Information
      • Author Bio:

        Adnan Shariah received his Ph.D. degree at the Middle East Technical University of Bath in 1990. He joined Jordan University of Science and Technology as an assistant professor in 1993. He carried out research at the Colorado State University and at University of Arkansas. He is now an associate professor in the Physics Department and the Solar Energy Laboratory at Jordan University of Science and Technology. His research mainly concerns semiconductor materials and solar thermal energy

        Feda Mahasneh is a MSc candidate under the supervision of Dr. Adnan Shariah in the department of physics at Jordan University of Science and Technology. His research focuses on heterojunction with intrinsic thin layer (HIT) solar cell

      • Corresponding author: shariah@just.edu.jo
      • Received Date: 2022-07-28
      • Revised Date: 2022-08-25
      • Available Online: 2022-09-26

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return