Citation: |
Yali Liu, Wei Li, Yudong Li, Xiaokuan Li, Liangsen Feng, Xinliang Li. Influence of architecture and temperature of alkali atom vapor cells on absorption spectra[J]. Journal of Semiconductors, 2022, 43(12): 122901. doi: 10.1088/1674-4926/43/12/122901
****
Y L Liu, W Li, Y D Li, X K Li, L S Feng, X L Li. Influence of architecture and temperature of alkali atom vapor cells on absorption spectra[J]. J. Semicond, 2022, 43(12): 122901. doi: 10.1088/1674-4926/43/12/122901
|
Influence of architecture and temperature of alkali atom vapor cells on absorption spectra
DOI: 10.1088/1674-4926/43/12/122901
More Information
-
Abstract
Chip-sized alkali atom vapor cells with high hermeticity are successfully fabricated through deep silicon etching and two anodic bonding processes. A self-built absorption spectrum testing system is used to test the absorption spectra of the rubidium atoms in alkali atom vapor cells. The influence of silicon cavity size, filling amount of rubidium atoms and temperature on the absorption spectra of rubidium atom vapor in the atom vapor cells are studied in depth through a theoretical analysis. This study provides a reference for the design and preparation of high quality chip-sized atom vapor cells. -
References
[1] Lemke N D, Martin K W, Beard R, et al. Measurement of optical rubidium clock frequency spanning 65 days. Sensors, 2022, 22, 1982 doi: 10.3390/s22051982[2] Liu Y L, Li W, Wu T F, et al. Research progress of chip scale atomic clock. Metrol Meas Technol, 2021, 41, 7 doi: 10.11823∕j.issn.1674-5795.2021.04.02[3] Hasegawa M, Chutani R K, Gorecki C, et al. Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks. Sens Actuat A, 2011, 167, 594 doi: 10.1016/j.sna.2011.02.039[4] Budker D, Romalis M. Optical magnetometry. Nat Phys, 2007, 3, 227 doi: 10.1038/nphys566[5] Brazhnikov D V, Ignatovich S M, Mesenzova I S, et al. Nonlinear enhanced-absorption resonances in compact alkali-vapor cells for applications in quantum metrology. J Phys: Conf Ser, 2021, 1859, 012019 doi: 10.1088/1742-6596/1859/1/012019[6] Walker T G, Happer W. Spin-exchange optical pumping of noble-gas nuclei. Rev Mod Phys, 1997, 69, 629 doi: 10.1103/RevModPhys.69.629[7] Allred J C, Lyman R N, Kornack T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys Rev Lett, 2002, 89, 130801 doi: 10.1103/PhysRevLett.89.130801[8] Tsvetkov S, Gateva S, Mariotti E. Optical control of high-density alkali atom vapor in antirelaxation coated cells. J Phys: Conf Ser, 2021, 1859, 012055 doi: 10.1088/1742-6596/1859/1/012055[9] Shun K, Yoshikazu H, Osamu T, et al. Microfabricated alkali metal vapor cells filled with an on-chip dispensing component. Jpn J Appl Phys, 2021, 60, SCCL01 doi: 10.35848/1347-4065/abe203[10] Jia S, Jiang Z Y, Jiao B B, et al. The microfabricated alkali vapor cell with high hermeticity for chip-scale atomic clock. Appl Sci, 2022, 12, 436 doi: 10.3390/app12010436[11] Li Y C, Hu X W, Liu Z J, et al. Research progress of atom vapor cell for chip-scale atomic clock. Laser Optoelectron Prog, 2018, 55, 060003 doi: 10.3788/LOP55.060003[12] GJB548B-2005. Test methods and procedures for microelectronic device. 2006[13] You Z, Ma B, Ruan Y, et al. Microfabrication of MEMS alkali metal vapor cells for chip-scale atomic devices. Opt Precis Eng, 2013, 21, 1440 doi: 10.3788/OPE.20132106.1440[14] Kitching J. Chip-scale atomic devices. Appl Phys Rev, 2018, 5, 031302 doi: 10.1063/1.5026238[15] Piccolo B, O’Connor R T. Atomic absorption spectroscopy. J Am Oil Chem Soc, 1968, 45, 789 doi: 10.1007/BF02631956[16] Romalis M V, Miron E, Cates G D. Pressure broadening of Rb D1 and D2 lines by 3He, 4He, N2, and Xe: Line cores and near wings. Phys Rev A, 1997, 56, 4569 doi: 10.1103/PhysRevA.56.4569[17] Zhou Y M. Measurement and analysis of alkali-metal-atom density distribution in gyroscopes. Master Dissertation, East China Normal University, 2020 (in Chinese)[18] Yang J. Study and exploration on physics package of coherent population trapping atomic clock. PhD Dissertation, University of Chinese Academy of Sciences, Wuhan Institute of Physics and Mathematics, 2014 (in Chinese)[19] Steck D A. Rubidium 85 D line data. Revision 2.1. 6, 2013 -
Proportional views