J. Semicond. > 2024, Volume 45 > Issue 7 > 072101

ARTICLES

Assembly of functional carboxymethyl cellulose/polyethylene oxide/anatase TiO2 nanocomposites and tuning the dielectric relaxation, optical, and photoluminescence performances

Asmaa M. Ismail1, Abeer A. Reffaee2 and Fawzy G. El Desouky3,

+ Author Affiliations

 Corresponding author: Fawzy G. El Desouky, fawzinrc@gmail.com, fa.goda@nrc.sci.eg

DOI: 10.1088/1674-4926/24020026

PDF

Turn off MathJax

Abstract: Nanocomposite films consisting of carboxymethyl cellulose, polyethylene oxide (CMC/PEO), and anatase titanium dioxide (TO) were produced by the use of sol-gel and solution casting techniques. TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers, as shown by X-ray diffraction (XRD) and attenuated total reflectance fourier transform infrared (ATR-FTIR) analysis. The roughness growth is at high levels of TO nanocrystals (TO NCs), which means increasing active sites and defects in CMC/PEO. In differential scanning calorimetry (DSC) thermograms, the change in glass transition temperature (Tg) values verifies that the polymer blend interacts with TO NCs. The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites, as observed. The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes. The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend. The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases. The photoluminescence (PL) emission spectra indicate that the sites of the luminescence peak maximums show slight variation; peaks get wider, while their intensities decrease dramatically as the concentration of TO increases. These nanocomposite materials show potential for multifunctional applications including optoelectronics, antireflection coatings, photocatalysis, light emitting diodes, and solid polymer electrolytes.

Key words: anatase TiO2CMC/PEOnanocomposites opticalphotoluminescentelectricaloptoelectronics



[1]
Das S, Das P P, Thomas S. Introduction: state of the art, new challenges and opportunities of sensory devices, polymer-based nano-bio materials, opto-electrochemical devices as sensor. Organic and inorganic materials based sensors, 2024, 1, 1 doi: 10.1002/9783527834266.ch1
[2]
Hezma A, Labeeb A M, El Desouky F G. Optimizations of performance of cellulose acetate modified by ZnSnO3/ZnO nanocomposites: Electrical, dynamic mechanical analysis, and antibacterial activity. Colloids Surf A Physicochem Eng Aspects, 2023, 676, 132110 doi: 10.1016/j.colsurfa.2023.132110
[3]
Romero-Fierro D, Bustamante-Torres M, Bravo-Plascencia F, et al. Polymer-magnetic semiconductor nanocomposites for industrial electronic applications. Polymers, 2022, 14, 2467 doi: 10.3390/polym14122467
[4]
Al-Mutairi N H, Mehdi A H, Kadhim B J. Nanocomposites materials definitions, types and some of their applications: a review. Eur J Sustain Dev Res, 2022, 3, 102
[5]
Camargo P H C, Satyanarayana K G, Wypych F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Mat Res, 2009, 12, 1 doi: 10.1590/S1516-14392009000100002
[6]
Ragab H M. Optical, thermal and electrical characterization of PEO/CMC incorporated with ZnO/TiO2 NPs for advanced flexible optoelectronic technologies. Ceram Int, 2023, 49, 12563 doi: 10.1016/j.ceramint.2022.12.118
[7]
Rakkapao N, Vao-soongnern V, Masubuchi Y, et al. Miscibility of chitosan/poly(ethylene oxide) blends and effect of doping alkali and alkali earth metal ions on chitosan/PEO interaction. Polymer, 2011, 52, 2618 doi: 10.1016/j.polymer.2011.03.044
[8]
Ahmed H T, Abdullah O G. Preparation and composition optimization of PEO: MC polymer blend films to enhance electrical conductivity. Polymers, 2019, 11, 853 doi: 10.3390/polym11050853
[9]
Alhagri I A, Qahtan T F, Farea M O, et al. Enhanced structural, optical properties and antibacterial activity of PEO/CMC doped TiO2 NPs for food packaging applications. Polymers, 2023, 15, 384 doi: 10.3390/polym15020384
[10]
El Fewaty N H, El Sayed A M, Hafez R S. Synthesis, structural and optical properties of tin oxide nanoparticles and its CMC/PEG–PVA nanocomposite films. Polym Sci Ser A, 2016, 58, 1004 doi: 10.1134/S0965545X16060055
[11]
Morsi M A, Abdelaziz M, Oraby A H, et al. Effect of lithium titanate nanoparticles on the structural, optical, thermal and electrical properties of polyethylene oxide/carboxymethyl cellulose blend. J Mater Sci Mater Electro, 2018, 29, 15912 doi: 10.1007/s10854-018-9677-9
[12]
Liu L S, Berg R A. Adhesion barriers of carboxymethylcellulose and polyethylene oxide composite gels. J Biomed Mater Res, 2002, 63, 326 doi: 10.1002/jbm.10211
[13]
Palmer D, Levina M, Nokhodchi A, et al. The influence of sodium carboxymethylcellulose on drug release from polyethylene oxide extended release matrices. AAPS PharmSciTech, 2011, 12, 862 doi: 10.1208/s12249-011-9648-4
[14]
Abdel-Galil A, Ali H E, Atta A, et al. Influence of nanostructured TiO2 additives on some physical characteristics of carboxymethyl cellulose (CMC). J Radiat Res Appl Sci, 2014, 7, 36 doi: 10.1016/j.jrras.2013.11.004
[15]
Liang Y, Sun S J, Deng T R, et al. The preparation of TiO2 film by the sol-gel method and evaluation of its self-cleaning property. Materials, 2018, 11, 450 doi: 10.3390/ma11030450
[16]
Tehare K K, Bhande S S, Mutkule S U, et al. Low-temperature chemical synthesis of rutile and anatase mixed phase TiO2 nanostructures for DSSCs photoanodes. J Alloys Compd, 2017, 704, 187 doi: 10.1016/j.jallcom.2017.01.358
[17]
Williamson G K, Hall W H. X-ray line broadening from filed aluminium and wolfram. Acta Metall, 1953, 1, 22 doi: 10.1016/0001-6160(53)90006-6
[18]
Gupta B, Agarwal R, SarwarAlam M. Preparation and characterization of polyvinyl alcohol-polyethylene oxide-carboxymethyl cellulose blend membranes. J Appl Polym Sci, 2013, 127, 1301 doi: 10.1002/app.37665
[19]
Kumar K K, Ravi M, Pavani Y, et al. Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci, 2014, 454, 200 doi: 10.1016/j.memsci.2013.12.022
[20]
Rozali, M L H. Effect of adipic acid composition on structural and conductivity solid biopolymer electrolytes based on carboxy methycellulose studies. American-Eurasian Journal of Sustainable Agriculture, 2015, 9, 39
[21]
Kumar B, Priyadarshi R, Sauraj, et al. Nanoporous sodium carboxymethyl cellulose-g-poly (sodium acrylate)/FeCl3 hydrogel beads: Synthesis and characterization. Gels, 2020, 6, 49 doi: 10.3390/gels6040049
[22]
Elashmawi I S, Ismail A M. Study of the spectroscopic, magnetic, and electrical behavior of PVDF/PEO blend incorporated with nickel ferrite (NiFe2O4) nanoparticles. Polym Bull, 2023, 80, 2329 doi: 10.1007/s00289-022-04139-9
[23]
Abd El-kader F H, Hakeem N A, Hafez R S, et al. Effect of Li4Ti5O12 nanoparticles on structural, optical and thermal properties of PVDF/PEO blend. J Inorg Organomet Polym Mater, 2018, 28, 1037 doi: 10.1007/s10904-017-0763-x
[24]
Zhang H, Wang X Y, Li N, et al. Synthesis and characterization of TiO2/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate. RSC Adv, 2018, 8, 34241 doi: 10.1039/C8RA06681G
[25]
Chougala L S, Yatnatti M S, Linganagoudar R K, et al. A Simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells. J Nano- Electron Phys, 2017, 9, 4005 doi: 10.21272/JNEP.9(4).04005
[26]
Rajeh A. Synthesis of the SWCNTS/TiO2 nanostructure and its effect on the thermal, optical, and conductivity properties of the CMC/PEO as application of low energy density devices, 2021
[27]
Gaabour L H. Influence of Cr2O3 nanoparticles on the structural, optical, thermal and electrical properties of PEO/CMC nanocomposites. Opt Quantum Electron, 2022, 54, 170 doi: 10.1007/s11082-022-03565-3
[28]
Abdelghany A M, Elashmawi I S, Al-Shamari A A, et al. Dielectric behavior and AC conductivity of PEO/CMC polymer blend incorporated with gold nanoparticles produced by laser ablation. J Mater Sci Mater Electron, 2023, 34, 388 doi: 10.1007/s10854-022-09797-z
[29]
Badry R, El-Khodary S, Elhaes H, et al. Optical, conductivity and dielectric properties of plasticized solid polymer electrolytes based on blends of sodium carboxymethyl cellulose and polyethylene oxide. Opt Quantum Electron, 2020, 53, 3 doi: 10.1007/s11082-020-02649-2
[30]
Telfah A, Al-Akhras M A, Al-Izzy K, et al. Dielectric relaxation, XPS and structural studies of polyethylene oxide/iodine complex composite films. Polym Bull, 2022, 79, 3759 doi: 10.1007/s00289-021-03593-1
[31]
Reffaee A A, Ward A A, et al. Dielectric properties and positron annihilation study of waste polyethylene terephthalate composites filled with carbon black. Kgk-Kaut Gummi Kunst, 2014, 67, 39
[32]
Hameed, S T, Qahtan T F, Abdelghany A M, et al. Structural, optical, and dielectric characteristics of copper oxide nanoparticles loaded CMC/PEO matrix. J Mater Sci, 2022, 57, 7556 doi: 10.1007/s10853-022-07134-7
[33]
Sengwa R J, Choudhary S, Dhatarwal P. Investigation of alumina nanofiller impact on the structural and dielectric properties of PEO/PMMA blend matrix-based polymer nanocomposites. Adv Compos Hybrid Mater, 2019, 2, 162 doi: 10.1007/s42114-019-00078-8
[34]
Kumar N B, Crasta, V, Praveen B M. Advancement in microstructural, optical, and mechanical properties of PVA (mowiol 10-98) doped by ZnO nanoparticles. Phys Res Int, 2014, 742378 doi: 10.1155/2014/742378
[35]
Keil T H. Theory of the urbach rule. Phys Rev, 1966, 144, 582 doi: 10.1103/PhysRev.144.582
[36]
Pankove J I. Optical processes in semiconductors. Courier Corporation, 1975
[37]
Ismail A M, El Desouky F G. Facile assembly of flexible quaternary SnO2/SrSnO3/Fe3O4/PVDF nanocomposites with tunable optical, electrical, and magnetic properties for promising magneto-optoelectronic applications. Sci Rep, 2023, 13, 4997 doi: 10.1038/s41598-023-32090-w
[38]
Palmer J M. The measurement of transmission, absorption, emission, and reflection. Handbook of optics, 1995, 2, 25
[39]
Wang D, Liu X, Wei M, et al. Rational design of a multi-valent human papillomavirus vaccine by capsomere-hybrid co-assembly of virus-like particles. Nature communications, 2020, 11, 2841 doi: 10.1038/s41467-020-16639-1
[40]
Turco Liveri V, Rossi M, D’Arrigo G, et al. Synthesis and characterization of ZnS nanoparticles in water/AOT/n-heptane microemulsions. Appl Phys A Mater Sci Process, 1999, 69, 369 doi: 10.1007/s003390051016
[41]
El Desouky F G, Saadeldin M M, Eisa W H. Synergistic influence of SnFe2O4 on ZnSnO3 hybrid nanostructures and optimizations optical, photoluminescence, and magnetic properties for multifunction application. Surf Interfaces, 2023, 38, 102749 doi: 10.1016/j.surfin.2023.102749
[42]
Mercado C, Seeley Z, Bandyopadhyay A, et al. Photoluminescence of Dense nanocrystalline titanium dioxide thin films: Effect of doping and thickness and relation to gas sensing. ACS Appl Mater Interfaces, 2011, 3, 2281 doi: 10.1021/am2006433
[43]
Pallotti D K, Orabona E, Amoruso S, et al. Multi-band photoluminescence in TiO2 nanoparticles-assembled films produced by femtosecond pulsed laser deposition. J Appl Phys, 2013, 114, 043503 doi: 10.1063/1.4816251
[44]
El Desouky F G, Moussa I, Obaida M. UV photo-sensing performance of NiSnO3 thin films deposited by pulsed spray pyrolysis technique. Indian J Phys, 2024, 1 doi: 10.1007/s12648-024-03124-4
Fig. 1.  (Color online) The scheme illustration of the preparation of CMC/PEO/TiO2 nanocomposites.

Fig. 2.  (Color online) (a) The XRD pattern, (b) the HRTEM, the selected area electron diffraction (SAED), (c) FESEM, and (d) EDX of the TiO2 nanocrystals.

Fig. 3.  (Color online) The XRD pattern of and CMC/PEO incorporated with different weight percentage of TO nanocrystals.

Fig. 4.  (Color online) FTIR spectra of (a) CMC/PEO and (b) CMC/PEO incorporated with different weight percentage of TO NCs.

Fig. 5.  (Color online) FESEM micrographs of (a) CMC/PEO and CMC/PEO inclusion with different weight percentages of TO NCs are as follows: (b) 2, (c) 6, (d) 10, and (e) 15 "wt%", TO NCs.

Fig. 6.  (Color online) DSC analysis of blend CMC/PEO and CMC/PEO inclusion with different weight percentages of TO NCs (6 "wt%" and 15 "wt%", TO NCs).

Fig. 7.  (Color online) (a, b) The dielectric constant ε′ and the dielectric loss ε″ vs. frequency f , and (c, d) the real M′ and the imaginary part M′′ of electric modulus vs. f for CMC/PEO/TO nanocomposites at 30 °C.

Fig. 8.  (Color online) (a) The electrical conductivity σ vs. frequency f for CMC/PEO/TiO2 nanocomposites and (b) log σdc vs. TiO2 loading concentrations at 30 °C.

Fig. 9.  (Color online) (a) The UV–Vis absorbance spectra and (b) reflection, as a function of wavelength. (c, d) The absorption coefficient, ln α versus photon energy of CMC/PEO and CMC/PEO inclusion with different weight percentage of TO NCs.

Fig. 10.  (Color online) Relation between (a) (αhυ)2 and (b) (αhυ)1/2 photon energy of CMC/PEO and CMC/PEO inclusion with different weight percentage of TO NCs.

Fig. 11.  (Color online) PL spectra of the CMC/PEO incorporated with different weight percentages of TO NCs samples at an excitation wavelength of 300 nm.

Fig. 12.  (Color online) (a−e) Gaussian-resolved constituents of PL spectra and (f) the CIE chromaticity graph at the excitation wavelength 300 nm of the samples.

Table 1.   Rr and Ra of CMC/PEO incorporated with different weight percentage of TO NCs.

Sample ID Rr (nm) Ra (nm) Rr/Ra
CMC/PEO 75.8 59.8 1.27
CMC/PEO-0.02 TO 82.1 59.1 1.39
CMC/PEO-0.06 TO 79.1 63.4 1.25
CMC/PEO-0.1 TO 139.5 87.4 1.60
CMC/PEO-0.15 TO 128.9 87.1 1.48
DownLoad: CSV

Table 2.   Values of absorption edge, Urbach energy and direct (Ed) , indirect (Eid) optical band gap energy of CMC/PEO/TO nanocomposites.

Sample ID Absorption
edge (eV)
Urbach energy (eV) Energy gap (eV)
Ed Eid
CMC/PEO 4.89 0.75 5.29 4.36
CMC/PEO-0.02 TO 4.49 1.16 5.16 3.81
CMC/PEO-0.06 TO 4.01 1.57 4.85 3.07
CMC/PEO-0.1 TO 4.14 1.40 4.96 3.03
CMC/PEO-0.15 TO 1.56 4.49 4.49 0.96
DownLoad: CSV
[1]
Das S, Das P P, Thomas S. Introduction: state of the art, new challenges and opportunities of sensory devices, polymer-based nano-bio materials, opto-electrochemical devices as sensor. Organic and inorganic materials based sensors, 2024, 1, 1 doi: 10.1002/9783527834266.ch1
[2]
Hezma A, Labeeb A M, El Desouky F G. Optimizations of performance of cellulose acetate modified by ZnSnO3/ZnO nanocomposites: Electrical, dynamic mechanical analysis, and antibacterial activity. Colloids Surf A Physicochem Eng Aspects, 2023, 676, 132110 doi: 10.1016/j.colsurfa.2023.132110
[3]
Romero-Fierro D, Bustamante-Torres M, Bravo-Plascencia F, et al. Polymer-magnetic semiconductor nanocomposites for industrial electronic applications. Polymers, 2022, 14, 2467 doi: 10.3390/polym14122467
[4]
Al-Mutairi N H, Mehdi A H, Kadhim B J. Nanocomposites materials definitions, types and some of their applications: a review. Eur J Sustain Dev Res, 2022, 3, 102
[5]
Camargo P H C, Satyanarayana K G, Wypych F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Mat Res, 2009, 12, 1 doi: 10.1590/S1516-14392009000100002
[6]
Ragab H M. Optical, thermal and electrical characterization of PEO/CMC incorporated with ZnO/TiO2 NPs for advanced flexible optoelectronic technologies. Ceram Int, 2023, 49, 12563 doi: 10.1016/j.ceramint.2022.12.118
[7]
Rakkapao N, Vao-soongnern V, Masubuchi Y, et al. Miscibility of chitosan/poly(ethylene oxide) blends and effect of doping alkali and alkali earth metal ions on chitosan/PEO interaction. Polymer, 2011, 52, 2618 doi: 10.1016/j.polymer.2011.03.044
[8]
Ahmed H T, Abdullah O G. Preparation and composition optimization of PEO: MC polymer blend films to enhance electrical conductivity. Polymers, 2019, 11, 853 doi: 10.3390/polym11050853
[9]
Alhagri I A, Qahtan T F, Farea M O, et al. Enhanced structural, optical properties and antibacterial activity of PEO/CMC doped TiO2 NPs for food packaging applications. Polymers, 2023, 15, 384 doi: 10.3390/polym15020384
[10]
El Fewaty N H, El Sayed A M, Hafez R S. Synthesis, structural and optical properties of tin oxide nanoparticles and its CMC/PEG–PVA nanocomposite films. Polym Sci Ser A, 2016, 58, 1004 doi: 10.1134/S0965545X16060055
[11]
Morsi M A, Abdelaziz M, Oraby A H, et al. Effect of lithium titanate nanoparticles on the structural, optical, thermal and electrical properties of polyethylene oxide/carboxymethyl cellulose blend. J Mater Sci Mater Electro, 2018, 29, 15912 doi: 10.1007/s10854-018-9677-9
[12]
Liu L S, Berg R A. Adhesion barriers of carboxymethylcellulose and polyethylene oxide composite gels. J Biomed Mater Res, 2002, 63, 326 doi: 10.1002/jbm.10211
[13]
Palmer D, Levina M, Nokhodchi A, et al. The influence of sodium carboxymethylcellulose on drug release from polyethylene oxide extended release matrices. AAPS PharmSciTech, 2011, 12, 862 doi: 10.1208/s12249-011-9648-4
[14]
Abdel-Galil A, Ali H E, Atta A, et al. Influence of nanostructured TiO2 additives on some physical characteristics of carboxymethyl cellulose (CMC). J Radiat Res Appl Sci, 2014, 7, 36 doi: 10.1016/j.jrras.2013.11.004
[15]
Liang Y, Sun S J, Deng T R, et al. The preparation of TiO2 film by the sol-gel method and evaluation of its self-cleaning property. Materials, 2018, 11, 450 doi: 10.3390/ma11030450
[16]
Tehare K K, Bhande S S, Mutkule S U, et al. Low-temperature chemical synthesis of rutile and anatase mixed phase TiO2 nanostructures for DSSCs photoanodes. J Alloys Compd, 2017, 704, 187 doi: 10.1016/j.jallcom.2017.01.358
[17]
Williamson G K, Hall W H. X-ray line broadening from filed aluminium and wolfram. Acta Metall, 1953, 1, 22 doi: 10.1016/0001-6160(53)90006-6
[18]
Gupta B, Agarwal R, SarwarAlam M. Preparation and characterization of polyvinyl alcohol-polyethylene oxide-carboxymethyl cellulose blend membranes. J Appl Polym Sci, 2013, 127, 1301 doi: 10.1002/app.37665
[19]
Kumar K K, Ravi M, Pavani Y, et al. Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci, 2014, 454, 200 doi: 10.1016/j.memsci.2013.12.022
[20]
Rozali, M L H. Effect of adipic acid composition on structural and conductivity solid biopolymer electrolytes based on carboxy methycellulose studies. American-Eurasian Journal of Sustainable Agriculture, 2015, 9, 39
[21]
Kumar B, Priyadarshi R, Sauraj, et al. Nanoporous sodium carboxymethyl cellulose-g-poly (sodium acrylate)/FeCl3 hydrogel beads: Synthesis and characterization. Gels, 2020, 6, 49 doi: 10.3390/gels6040049
[22]
Elashmawi I S, Ismail A M. Study of the spectroscopic, magnetic, and electrical behavior of PVDF/PEO blend incorporated with nickel ferrite (NiFe2O4) nanoparticles. Polym Bull, 2023, 80, 2329 doi: 10.1007/s00289-022-04139-9
[23]
Abd El-kader F H, Hakeem N A, Hafez R S, et al. Effect of Li4Ti5O12 nanoparticles on structural, optical and thermal properties of PVDF/PEO blend. J Inorg Organomet Polym Mater, 2018, 28, 1037 doi: 10.1007/s10904-017-0763-x
[24]
Zhang H, Wang X Y, Li N, et al. Synthesis and characterization of TiO2/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate. RSC Adv, 2018, 8, 34241 doi: 10.1039/C8RA06681G
[25]
Chougala L S, Yatnatti M S, Linganagoudar R K, et al. A Simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells. J Nano- Electron Phys, 2017, 9, 4005 doi: 10.21272/JNEP.9(4).04005
[26]
Rajeh A. Synthesis of the SWCNTS/TiO2 nanostructure and its effect on the thermal, optical, and conductivity properties of the CMC/PEO as application of low energy density devices, 2021
[27]
Gaabour L H. Influence of Cr2O3 nanoparticles on the structural, optical, thermal and electrical properties of PEO/CMC nanocomposites. Opt Quantum Electron, 2022, 54, 170 doi: 10.1007/s11082-022-03565-3
[28]
Abdelghany A M, Elashmawi I S, Al-Shamari A A, et al. Dielectric behavior and AC conductivity of PEO/CMC polymer blend incorporated with gold nanoparticles produced by laser ablation. J Mater Sci Mater Electron, 2023, 34, 388 doi: 10.1007/s10854-022-09797-z
[29]
Badry R, El-Khodary S, Elhaes H, et al. Optical, conductivity and dielectric properties of plasticized solid polymer electrolytes based on blends of sodium carboxymethyl cellulose and polyethylene oxide. Opt Quantum Electron, 2020, 53, 3 doi: 10.1007/s11082-020-02649-2
[30]
Telfah A, Al-Akhras M A, Al-Izzy K, et al. Dielectric relaxation, XPS and structural studies of polyethylene oxide/iodine complex composite films. Polym Bull, 2022, 79, 3759 doi: 10.1007/s00289-021-03593-1
[31]
Reffaee A A, Ward A A, et al. Dielectric properties and positron annihilation study of waste polyethylene terephthalate composites filled with carbon black. Kgk-Kaut Gummi Kunst, 2014, 67, 39
[32]
Hameed, S T, Qahtan T F, Abdelghany A M, et al. Structural, optical, and dielectric characteristics of copper oxide nanoparticles loaded CMC/PEO matrix. J Mater Sci, 2022, 57, 7556 doi: 10.1007/s10853-022-07134-7
[33]
Sengwa R J, Choudhary S, Dhatarwal P. Investigation of alumina nanofiller impact on the structural and dielectric properties of PEO/PMMA blend matrix-based polymer nanocomposites. Adv Compos Hybrid Mater, 2019, 2, 162 doi: 10.1007/s42114-019-00078-8
[34]
Kumar N B, Crasta, V, Praveen B M. Advancement in microstructural, optical, and mechanical properties of PVA (mowiol 10-98) doped by ZnO nanoparticles. Phys Res Int, 2014, 742378 doi: 10.1155/2014/742378
[35]
Keil T H. Theory of the urbach rule. Phys Rev, 1966, 144, 582 doi: 10.1103/PhysRev.144.582
[36]
Pankove J I. Optical processes in semiconductors. Courier Corporation, 1975
[37]
Ismail A M, El Desouky F G. Facile assembly of flexible quaternary SnO2/SrSnO3/Fe3O4/PVDF nanocomposites with tunable optical, electrical, and magnetic properties for promising magneto-optoelectronic applications. Sci Rep, 2023, 13, 4997 doi: 10.1038/s41598-023-32090-w
[38]
Palmer J M. The measurement of transmission, absorption, emission, and reflection. Handbook of optics, 1995, 2, 25
[39]
Wang D, Liu X, Wei M, et al. Rational design of a multi-valent human papillomavirus vaccine by capsomere-hybrid co-assembly of virus-like particles. Nature communications, 2020, 11, 2841 doi: 10.1038/s41467-020-16639-1
[40]
Turco Liveri V, Rossi M, D’Arrigo G, et al. Synthesis and characterization of ZnS nanoparticles in water/AOT/n-heptane microemulsions. Appl Phys A Mater Sci Process, 1999, 69, 369 doi: 10.1007/s003390051016
[41]
El Desouky F G, Saadeldin M M, Eisa W H. Synergistic influence of SnFe2O4 on ZnSnO3 hybrid nanostructures and optimizations optical, photoluminescence, and magnetic properties for multifunction application. Surf Interfaces, 2023, 38, 102749 doi: 10.1016/j.surfin.2023.102749
[42]
Mercado C, Seeley Z, Bandyopadhyay A, et al. Photoluminescence of Dense nanocrystalline titanium dioxide thin films: Effect of doping and thickness and relation to gas sensing. ACS Appl Mater Interfaces, 2011, 3, 2281 doi: 10.1021/am2006433
[43]
Pallotti D K, Orabona E, Amoruso S, et al. Multi-band photoluminescence in TiO2 nanoparticles-assembled films produced by femtosecond pulsed laser deposition. J Appl Phys, 2013, 114, 043503 doi: 10.1063/1.4816251
[44]
El Desouky F G, Moussa I, Obaida M. UV photo-sensing performance of NiSnO3 thin films deposited by pulsed spray pyrolysis technique. Indian J Phys, 2024, 1 doi: 10.1007/s12648-024-03124-4

24020026Supplementary information.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 775 Times PDF downloads: 108 Times Cited by: 0 Times

    History

    Received: 27 February 2024 Revised: 23 April 2024 Online: Accepted Manuscript: 19 April 2024Uncorrected proof: 23 April 2024Published: 15 July 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Asmaa M. Ismail, Abeer A. Reffaee, Fawzy G. El Desouky. Assembly of functional carboxymethyl cellulose/polyethylene oxide/anatase TiO2 nanocomposites and tuning the dielectric relaxation, optical, and photoluminescence performances[J]. Journal of Semiconductors, 2024, 45(7): 072101. doi: 10.1088/1674-4926/24020026 ****A M Ismail, A A Reffaee, and F G El Desouky, Assembly of functional carboxymethyl cellulose/polyethylene oxide/anatase TiO2 nanocomposites and tuning the dielectric relaxation, optical, and photoluminescence performances[J]. J. Semicond., 2024, 45(7), 072101 doi: 10.1088/1674-4926/24020026
      Citation:
      Asmaa M. Ismail, Abeer A. Reffaee, Fawzy G. El Desouky. Assembly of functional carboxymethyl cellulose/polyethylene oxide/anatase TiO2 nanocomposites and tuning the dielectric relaxation, optical, and photoluminescence performances[J]. Journal of Semiconductors, 2024, 45(7): 072101. doi: 10.1088/1674-4926/24020026 ****
      A M Ismail, A A Reffaee, and F G El Desouky, Assembly of functional carboxymethyl cellulose/polyethylene oxide/anatase TiO2 nanocomposites and tuning the dielectric relaxation, optical, and photoluminescence performances[J]. J. Semicond., 2024, 45(7), 072101 doi: 10.1088/1674-4926/24020026

      Assembly of functional carboxymethyl cellulose/polyethylene oxide/anatase TiO2 nanocomposites and tuning the dielectric relaxation, optical, and photoluminescence performances

      DOI: 10.1088/1674-4926/24020026
      More Information
      • Asmaa M. Ismail received her doctoral degree in 2019 in science (in Molecular Spectroscopy) from the Physics Department, Faculty of Science, Cairo University. She is currently a researcher in the Spectroscopy Department, Physics Research Institute, National Research Centre, Giza, Egypt. Her current research interests include Molecular Spectroscopy, oxide semiconductors, optoelectronics, pervoskite materials, polymer composites, and magnetic materials
      • Fawzy G. El Desouky received his doctoral degree in 2020 in science (Physics-Solid State Physics) from the Physics Department, Faculty of Science, Cairo University. He is currently a researcher in the Solid State Physics Department, Physics Research Institute, National Research Centre, Giza, Egypt. His current research interests include oxide semiconductors, optoelectronics, pervoskite materials, polymer composites, and magnetic materials
      • Corresponding author: fawzinrc@gmail.com, fa.goda@nrc.sci.eg
      • Received Date: 2024-02-27
      • Revised Date: 2024-04-23
      • Available Online: 2024-04-19

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return