Citation: |
Haifeng Chen, Zhanhang Liu, Yixin Zhang, Feilong Jia, Chenlu Wu, Qin Lu, Xiangtai Liu, Shaoqing Wang. 10 × 10 Ga2O3-based solar-blind UV detector array and imaging characteristic[J]. Journal of Semiconductors, 2024, 45(9): 092502. doi: 10.1088/1674-4926/24030005
****
H F Chen, Z H Liu, Y X Zhang, F L Jia, C L Wu, Q Lu, X T Liu, and S Q Wang, 10 × 10 Ga2O3-based solar-blind UV detector array and imaging characteristic[J]. J. Semicond., 2024, 45(9), 092502 doi: 10.1088/1674-4926/24030005
|
10 × 10 Ga2O3-based solar-blind UV detector array and imaging characteristic
DOI: 10.1088/1674-4926/24030005
More Information
-
Abstract
A 10 × 10 solar-blind ultraviolet (UV) imaging array with double-layer wire structure was prepared based on Ga2O3 film grown by atomic layer deposition. These single detection units in the array exhibit excellent performance at 3 V: photo-to-dark current ratio (PDCR) of 5.5 × 105, responsivity (R) of 4.28 A/W, external quantum efficiency (EQE) of 2.1 × 103%, detectivity (D*) of 1.5 × 1014 Jones, and fast response time. The photodetector array shows high uniformity under different light intensity and low operating bias. The array also has good temperature stability. Under 300 °C, it still presents clear imaging and keeps high R of 34.4 and 6.45 A/W at 5 and 1 V, respectively. This work provides a new insight for the large-scale array of Ga2O3 solar-blind UV detectors. -
References
[1] Liang H L, Han Z Y, Mei Z X. Recent progress of deep ultraviolet photodetectors using amorphous gallium oxide thin films. Phys Status Solidi A, 2021, 218, 2000339 doi: 10.1002/pssa.202000339[2] Xu J J, Zheng W, Huang F. Gallium oxide solar-blind ultraviolet photodetectors: A review. J Mater Chem C, 2019, 7, 8753 doi: 10.1039/C9TC02055A[3] Wei T C, Tsai D S, Ravadgar P, et al. See-through Ga2O3 solar-blind photodetectors for use in harsh environments. IEEE J Sel Top Quantum Electron, 2014, 20, 112 doi: 10.1109/JSTQE.2014.2321517[4] Yang G, Jang S, Ren F, et al. Influence of high-energy proton irradiation on β-Ga2O3 nanobelt field-effect transistors. ACS Appl Mater Interfaces, 2017, 9, 40471 doi: 10.1021/acsami.7b13881[5] Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100, 013504 doi: 10.1063/1.3674287[6] Kaur D, Vashishtha P, Khan S A, et al. Phase dependent radiation hardness and performance analysis of amorphous and polycrystalline Ga2O3 solar-blind photodetector against swift heavy ion irradiation. J Appl Phys, 2020, 128, 065902 doi: 10.1063/5.0019786[7] Pearton S J, Yang J C, Cary P H, et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 2018, 5, 011301 doi: 10.1063/1.5006941[8] Roy R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the system Ga2O3−H2O. J Am Chem Soc, 1952, 74, 719 doi: 10.1021/ja01123a039[9] Orita M, Ohta H, Hirano M, et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 2000, 77, 4166 doi: 10.1063/1.1330559[10] Kaur D, Kumar M. A strategic review on gallium oxide based deep-ultraviolet photodetectors: Recent progress and future prospects. Adv opt mater, 2021, 9, 2002160 doi: 10.1002/adom.202002160[11] Qian L X, Gu Z, Huang X, et al. Comprehensively improved performance of β-Ga2O3 solar-blind photodetector enabled by a homojunction with unique passivation mechanisms. ACS Appl Mater Interfaces, 2021, 13, 40837 doi: 10.1021/acsami.1c12615[12] Liu Z, Zhi Y S, Zhang S H, et al. Ultrahigh-performance planar β-Ga2O3 solar-blind Schottky photodiode detectors. Sci China Technol Sci, 2021, 64, 59 doi: 10.1007/s11431-020-1701-2[13] Wu D, Zhao Z H, Lu W, et al. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Res, 2021, 14, 1973 doi: 10.1007/s12274-021-3346-7[14] Qin Y, Sun H D, Long S B, et al. High-performance metal-organic chemical vapor deposition grown ε-Ga2O3 solar-blind photodetector with asymmetric Schottky electrodes. IEEE Electron Device Lett, 2019, 40, 1475 doi: 10.1109/LED.2019.2932382[15] Wang H, Ma J, Cong L, et al. Piezoelectric effect enhanced flexible UV photodetector based on Ga2O3/ZnO heterojunction. Mater Today Phys, 2021, 20, 100464 doi: 10.1016/j.mtphys.2021.100464[16] Wu C, He H L, Hu H Z, et al. Self-healing wearable self-powered deep ultraviolet photodetectors based on Ga2O3. J Semicond, 2023, 44, 072807 doi: 10.1088/1674-4926/44/7/072807[17] Qu Y Y, Wu Z P, Ai M L, et al. Enhanced Ga2O3/SiC ultraviolet photodetector with graphene top electrodes. J Alloys Compd, 2016, 680, 247 doi: 10.1016/j.jallcom.2016.04.134[18] Xie C, Lu X T, Liang Y, et al. Patterned growth of β-Ga2O3 thin films for solar-blind deep-ultraviolet photodetectors array and optical imaging application. J Mater Sci Technol, 2021, 72, 189 doi: 10.1016/j.jmst.2020.09.015[19] Liu Z, Zhi Y S, Zhang M L, et al. A 4 × 4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response. Chinese Phys B, 2022, 31, 088503 doi: 10.1088/1674-1056/ac597d[20] Ding M F, Liang K, Yu S J, et al. Aqueous-printed Ga2O3 films for high-performance flexible and heat-resistant deep ultraviolet photodetector and array. Adv Opt Mater, 2022, 10, 2200512 doi: 10.1002/adom.202200512[21] Shen G H, Liu Z, Tang K, et al. High responsivity and fast response 8 × 8 β-Ga2O3 solar-blind ultraviolet imaging photodetector array. Sci China Technol Sci, 2023, 66, 3259 doi: 10.1007/s11431-022-2404-8[22] Hou X H, Zhao X L, Zhang Y, et al. High-performance harsh-environment-resistant GaOx solar-blind photodetectors via defect and doping engineering. Adv Mater, 2022, 34, 2106923 doi: 10.1002/adma.202106923[23] Shen G H, Liu Z, Tan C K, et al. Solar-blind UV communication based on sensitive β-Ga2O3 photoconductive detector array. Appl Phys Lett, 2023, 123, 041103 doi: 10.1063/5.0161521[24] Prabakar K, Venkatachalam S, Jeyachandran Y L, et al. Microstructure, Raman and optical studies on Cd0.6Zn0. 4Te thin films. Mater Sci Eng B, 2004, 107, 99 doi: 10.1016/j.mseb.2003.10.017[25] Zheng W, Huang F, Zheng R S, et al. Low-dimensional structure vacuum-ultraviolet-sensitive (λ < 200 nm) photodetector with fast-response speed based on high-quality AlN micro/nanowire. Adv Mater, 2015, 27, 3921 doi: 10.1002/adma.201500268[26] Shen G H, Liu Z, Zhang M L, et al. 16 × 16 solar-blind UV detector based on β-Ga2O3 sensors. IEEE Electron Device Lett, 2023, 44, 1140 doi: 10.1109/LED.2023.3272909[27] Qin Y, Li L H, Zhao X L, et al. Metal-semiconductor-metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism. Acs Photonics, 2020, 7, 812 doi: 10.1021/acsphotonics.9b01727[28] Hou X H, Zou Y N, Ding M F, et al. Review of polymorphous Ga2O3 materials and their solar-blind photodetector applications. J Phys D: Appl Phys, 2020, 54, 043001 doi: 10.1088/1361-6463/abbb45[29] Zhang Q Y, Li N, Zhang T, et al. Enhanced gain and detectivity of unipolar barrier solar blind avalanche photodetector via lattice and band engineering. Nat commun, 2023, 14, 418 doi: 10.1038/s41467-023-36117-8[30] He H L, Wu C, Hu H Z, et al. Bandgap engineering and oxygen vacancy defect electroactivity inhibition in highly crystalline N-alloyed Ga2O3 films through plasma-enhanced technology. J Phys Chem Lett, 2023, 14, 6444 doi: 10.1021/acs.jpclett.3c01368[31] Xu Y, Cheng Y L, Li Z, et al. Ultrahigh-performance solar-blind photodetectors based on high quality heteroepitaxial single crystalline β-Ga2O3 film grown by vacuumfree, low-cost mist chemical vapor deposition. Adv Mater Technol, 2021, 6, 2001296 doi: 10.1002/admt.202001296[32] Xu Y, An Z Y, Zhang L X, et al. Solar blind deep ultraviolet β-Ga2O3 photodetectors grown on sapphire by the Mist-CVD method. Opt Mater Express, 2018, 8, 2941 doi: 10.1364/OME.8.002941[33] Hu Z G, Cheng Q, Zhang T, et al. Solar-blind photodetectors fabricated on β-Ga2O3 films deposited on 6° off-angled sapphire substrates. J Lumin, 2023, 255, 119596 doi: 10.1016/j.jlumin.2022.119596[34] Wang Q L, Chen J, Huang P, et al. Influence of growth temperature on the characteristics of β-Ga2O3 epitaxial films and related solar-blind photodetectors. Appl Surf Sci, 2019, 489, 101 doi: 10.1016/j.apsusc.2019.05.328[35] Oh S, Jung Y, Mastro M A, et al. Development of solar-blind photodetectors based on Si-implanted β-Ga2O3. Opt Express, 2015, 23, 28300 doi: 10.1364/OE.23.028300[36] Chen Y C, Lu Y J, Liu Q, et al. Ga2O3 photodetector arrays for solar-blind imaging. J Mater Chem C, 2019, 7, 2557 doi: 10.1039/C8TC05251D[37] Peng Y K, Zhang Y, Chen Z W, et al. Arrays of solar-blind ultraviolet photodetector based on β-Ga2O3 epitaxial thin films. IEEE Photonics Technol Lett, 2018, 30, 993 doi: 10.1109/LPT.2018.2826560[38] Zheng Q Q, Chen L R, Li X D, et al. Boosting the performance of deep-ultraviolet photodetector arrays based on phase-transformed heteroepitaxial β-Ga2O3 films for solar-blind imaging. Sci China Technol Sci, 2023, 66, 2707 doi: 10.1007/s11431-023-2416-6[39] Chen Y C, Yang X, Zhang Y, et al. Ultra-sensitive flexible Ga2O3 solar-blind photodetector array realized via ultra-thin absorbing medium. Nano Res, 2021, 15, 3711 doi: 10.1007/s12274-021-3942-6[40] Chen Y, Lu Y J, Liao M Y, et al. 3D solar-blind Ga2O3 photodetector array realized via origami method. Adv Funct Mater, 2019, 29, 1906040 doi: 10.1002/adfm.201906040[41] Zhou H T, Cong L J, Ma J G, et al. High-performance high-temperature solar-blind photodetector based on polycrystalline Ga2O3 film. J Alloys Compd, 2020, 847, 156536 doi: 10.1016/j.jallcom.2020.156536[42] Xu Y, Chen X, Zhou D, et al. Carrier transport and gain mechanisms in β-Ga2O3-based metal-semiconductor-metal solar-blind Schottky photodetectors. IEEE Trans Electron Devices, 2019, 66, 2276 doi: 10.1109/TED.2019.2906906[43] Tak B R, Garg M, Dewan S, et al. High-temperature photocurrent mechanism of β-Ga2O3 based metal-semiconductor-metal solar-blind photodetectors. J Appl Phys, 2019, 125, 144501 doi: 10.1063/1.5088532 -
Proportional views