J. Semicond. > 2024, Volume 45 > Issue 12 > 122402

ARTICLES

Self-powered PEDOT:PSS/Sn:α-Ga2O3 heterojunction UV photodetector via organic/inorganic hybrid ink engineering

Yifan Yao1, Suhao Yao1, Jiaqing Yuan1, Zeng Liu2, Maolin Zhang1, Lili Yang1, and Weihua Tang1,

+ Author Affiliations

 Corresponding author: Lili Yang, liliyang@njupt.edu.cn; Weihua Tang, whtang@njupt.edu.cn

DOI: 10.1088/1674-4926/24050048

PDF

Turn off MathJax

Abstract: In this work, a PEDOT:PSS/Sn:α-Ga2O3 hybrid heterojunction diode (HJD) photodetector was fabricated by spin-coating highly conductive PEDOT:PSS aqueous solution on the mist chemical vapor deposition (Mist-CVD) grown Sn:α-Ga2O3 film. This approach provides a facile and low-cost p-PEDOT:PSS/n-Sn:α-Ga2O3 spin-coating method that facilitates self-powering performance through p−n junction formation. A typical type-Ⅰ heterojunction is formed at the interface of Sn:α-Ga2O3 film and PEDOT:PSS, and contributes to a significant photovoltaic effect with an open-circuit voltage (Voc) of 0.4 V under the 254 nm ultraviolet (UV) light. When operating in self-powered mode, the HJD exhibits excellent photo-response performance including an outstanding photo-current of 10.9 nA, a rapid rise/decay time of 0.38/0.28 s, and a large on/off ratio of 91.2. Additionally, the HJD also possesses excellent photo-detection performance with a high responsivity of 5.61 mA/W and a good detectivity of 1.15 × 1011 Jones at 0 V bias under 254 nm UV light illumination. Overall, this work may explore the potential range of self-powered and high-performance UV photodetectors.

Key words: Sn-doped α-Ga2O3spin-coated PEDOT:PSSheterojunction photodetectorink engineering



[1]
Peng L, Hu L F, Fang X S. Low-dimensional nanostructure ultraviolet photodetectors. Adv Mater, 2013, 25, 5321 doi: 10.1002/adma.201301802
[2]
Alaie Z, Mohammad Nejad S, Yousefi M H. Recent advances in ultraviolet photodetectors. Mater Sci Semicond Process, 2015, 29, 16 doi: 10.1016/j.mssp.2014.02.054
[3]
Chen H Y, Liu K W, Hu L F, et al. New concept ultraviolet photodetectors. Mater Today, 2015, 18, 493 doi: 10.1016/j.mattod.2015.06.001
[4]
Shu L C, Yao S H, Xi Z Y, et al. Multi-pixels gallium oxide UV detector array and optoelectronic applications. Nanotechnology, 2023, 35, 052001 doi: 10.1088/1361-6528/ad079f
[5]
Yatskiv R, Tiagulskyi S, Grym J. Influence of crystallographic orientation on Schottky barrier formation in gallium oxide. J Electron Mater, 2020, 49, 5133 doi: 10.1007/s11664-020-07996-0
[6]
Yao Y, Gangireddy R, Kim J, et al. Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals. J Vac Sci Technol B, 2017, 35, 03D113 doi: 10.1116/1.4980042
[7]
Kaur D, Kumar M. A strategic review on gallium oxide based deep-ultraviolet photodetectors: Recent progress and future prospects. Adv Optical Mater, 2021, 9, 2002160 doi: 10.1002/adom.202002160
[8]
Kokubun Y, Miura K, Endo F, et al. Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors. Appl Phys Lett, 2007, 90, 031912 doi: 10.1063/1.2432946
[9]
Chen X H, Xu Y, Zhou D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures. ACS Appl Mater Interfaces, 2017, 9, 36997 doi: 10.1021/acsami.7b09812
[10]
Kan S I, Takemoto S, Kaneko K, et al. Study on corundum-structured p-type iridium oxide thin films and band alignment at iridium oxide/gallium oxide hetero-junction. 2018 IEEE CPMT Symposium Japan (ICSJ), 2018, 95 doi: 10.1109/ICSJ.2018.8602906
[11]
Sun B Y, Sun W M, Li S, et al. High-sensitive, self-powered deep UV photodetector based on p-CuSCN/n-Ga2O3 thin film heterojunction. Opt Commun, 2022, 504, 127483 doi: 10.1016/j.optcom.2021.127483
[12]
Ma G L, Gao A, Liu Z, et al. Solution spin-coated BiFeO3 onto Ga2O3 towards self-powered deep UV photo detector of Ga2O3/BiFeO3 heterojunction. IEEE Sens J, 2021, 21, 23987 doi: 10.1109/JSEN.2021.3115719
[13]
Qi X H, Yue J Y, Ji X Q, et al. A deep-ultraviolet photodetector of a β-Ga2O3/CuBiI4 heterojunction highlighting ultra-high sensitivity and responsivity. Thin Solid Films, 2022, 757, 139397 doi: 10.1016/j.tsf.2022.139397
[14]
Takano T, Masunaga H, Fujiwara A, et al. PEDOT nanocrystal in highly conductive PEDOT: PSS polymer films. Macromolecules, 2012, 45, 3859 doi: 10.1021/ma300120g
[15]
Zhao Z H, Richardson G F, Meng Q S, et al. PEDOT-based composites as electrode materials for supercapacitors. Nanotechnology, 2016, 27, 042001 doi: 10.1088/0957-4484/27/4/042001
[16]
Sun K, Zhang S P, Li P C, et al. Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices. J Mater Sci Mater Electron, 2015, 26, 4438 doi: 10.1007/s10854-015-2895-5
[17]
Feng B Y, Li Z C, Cheng F Y, et al. Investigation of β-Ga2O3 film growth mechanism on c-plane sapphire substrate by ozone molecular beam epitaxy. Phys Status Solidi A, 2021, 218, 2000457 doi: 10.1002/pssa.202000457
[18]
Lu C, Ji X Q, Liu Z, et al. A review of metal–semiconductor contacts for β-Ga2O3. J Phys D: Appl Phys, 2022, 55, 463002 doi: 10.1088/1361-6463/ac8818
[19]
Dang G T, Allen M W, Furuta M, et al. Electronic devices fabricated on mist-CVD-grown oxide semiconductors and their applications. Jpn J Appl Phys, 2019, 58, 090606 doi: 10.7567/1347-4065/ab2195
[20]
Akaiwa K, Kaneko K, Ichino K, et al. Conductivity control of Sn-doped α-Ga2O3 thin films grown on sapphire substrates. Jpn J Appl Phys, 2016, 55, 1202BA doi: 10.7567/JJAP.55.1202BA
[21]
Akaiwa K, Fujita S. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 2012, 51, 070203 doi: 10.1143/JJAP.51.070203
[22]
Chikoidze E, Fellous A, Perez-Tomas A, et al. P-type β-gallium oxide: A new perspective for power and optoelectronic devices. Mater Today Phys, 2017, 3, 118 doi: 10.1016/j.mtphys.2017.10.002
[23]
Jinno R, Yoshimura N, Kaneko K, et al. Enhancement of epitaxial lateral overgrowth in the mist chemical vapor deposition of α using a-plane sapphire substrate. Jpn J Appl Phys, 2019, 58, 120912 doi: 10.7567/1347-4065/ab55c6
[24]
Yao S H, Liu Z, Zhang M L, et al. Photogain-enhanced signal-to-noise performance of a polycrystalline Sn: Ga2O3 UV detector via impurity-level transition and multiple carrier transport. ACS Appl Electron Mater, 2023, 5, 7061 doi: 10.1021/acsaelm.3c01371
[25]
Zheng Z H, Wang W, Wu F, et al. Flexible assembly of the PEDOT: PSS/exfoliated β-Ga2O3 microwire hybrid heterojunction for high-performance self-powered solar-blind photodetector. Opt Express, 2022, 30, 21822 doi: 10.1364/OE.461342
[26]
Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi B, 1966, 15, 627 doi: 10.1002/pssb.19660150224
[27]
Yasuoka T, Liu L, Ozaki T, et al. The effect of HCl on the α-Ga2O3 thin films fabricated by third generation mist chemical vapor deposition. AIP Adv, 2021, 11, 045123 doi: 10.1063/5.0051050
[28]
Ryou H, Yoo T H, Yoon Y, et al. Hydrothermal synthesis and photocatalytic property of Sn-doped β-Ga2O3 nanostructure. ECS J Solid State Sci Technol, 2020, 9, 045009 doi: 10.1149/2162-8777/ab8b4b
[29]
Li S, Yue J Y, Ji X Q, et al. Oxygen vacancies modulating the photodetector performances in ε-Ga2O3 thin films. J Mater Chem C, 2021, 9, 5437 doi: 10.1039/D1TC00616A
[30]
Ma W Y, Zhang M L, Wang L, et al. Fermi-level splitting-induced light-intensity-dependent recombination in fully ultra-wide bandgap deep-ultraviolet photodetector. IEEE J Electron Devices Soc, 2024, 12, 221 doi: 10.1109/JEDS.2024.3373905
[31]
Mazzio K A, Kojda D, Rubio-Govea R, et al. P-type-to-N-type transition in hybrid AgxTe/PEDOT: PSS thermoelectric materials via stoichiometric control during solution-based synthesis. ACS Appl Energy Mater, 2020, 3, 10734 doi: 10.1021/acsaem.0c01774
[32]
Sun X Y, Chen X H, Hao J G, et al. A self-powered solar-blind photodetector based on polyaniline/α-Ga2O3 p–n heterojunction. Appl Phys Lett, 2021, 119, 141601 doi: 10.1063/5.0059061
[33]
Xi Z Y, Yang L L, Liu Z, et al. Study on PECVD-hetero-grown β-Ga2O3 thin film and temperature-modulated solar-blind UV photodetection. J Phys D: Appl Phys, 2024, 57, 085101 doi: 10.1088/1361-6463/ad0bc4
[34]
Li L, Liu Z, Yao S H, et al. High photo-responsivity deep-UV detector based on binary SnO2-Ga2O3 compound nanowires array. IEEE Photonics Technol Lett, 2024, 36, 47 doi: 10.1109/LPT.2023.3335109
[35]
Lv Z X, Yan S Q, Mu W X, et al. A high responsivity and photosensitivity self-powered UV photodetector constructed by the CuZnS/Ga2O3 heterojunction. Adv Mater Interfaces, 2023, 10, 2202130 doi: 10.1002/admi.202202130
[36]
Yu J G, Lou J S, Wang Z, et al. Surface modification of β-Ga2O3 layer using pt nanoparticles for improved deep UV photodetector performance. J Alloys Compd, 2021, 872, 159508 doi: 10.1016/j.jallcom.2021.159508
[37]
Wang Y C, Wu C, Guo D Y, et al. All-oxide NiO/Ga2O3 p–n junction for self-powered UV photodetector. ACS Appl Electron Mater, 2020, 2, 2032 doi: 10.1021/acsaelm.0c00301
[38]
Kan H, Zheng W, Fu C, et al. Ultrawide band gap oxide nanodots (Eg > 4.8 eV) for a high-performance deep ultraviolet photovoltaic detector. ACS Appl Mater Interfaces, 2020, 12, 6030 doi: 10.1021/acsami.9b17679
[39]
Kaneko K, Uno K, Jinno R, et al. Prospects for phase engineering of semi-stable Ga2O3 semiconductor thin films using mist chemical vapor deposition. J Appl Phys, 2022, 131, 090902 doi: 10.1063/5.0069554
[40]
Li X, Lu H L, Ma H P, et al. Chemical, optical, and electrical characterization of Ga2O3 thin films grown by plasma-enhanced atomic layer deposition. Curr Appl Phys, 2019, 19, 72 doi: 10.1016/j.cap.2018.11.013
[41]
Li S, Zhi Y S, Lu C, et al. Broadband ultraviolet self-powered photodetector constructed on exfoliated β-Ga2O3/CuI core-shell microwire heterojunction with superior reliability. J Phys Chem Lett, 2021, 12, 447 doi: 10.1021/acs.jpclett.0c03382
[42]
Liu Z, Du L, Zhang S H, et al. Synergetic effect of photoconductive gain and persistent photocurrent in a high-photoresponse Ga2O3 deep-ultraviolet photodetector. IEEE Trans Electron Devices, 2022, 69, 5595 doi: 10.1109/TED.2022.3195473
[43]
Liu N S, Fang G J, Zeng W, et al. Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction. ACS Appl Mater Interfaces, 2010, 2, 1973 doi: 10.1021/am100277q
[44]
Chen T W, Zhang X D, Ma Y J, et al. Self-powered and spectrally distinctive nanoporous Ga2O3/GaN epitaxial heterojunction UV photodetectors. Adv Photonics Res, 2021, 2, 2100049 doi: 10.1002/adpr.202100049
[45]
Chen J X, Ouyang W X, Yang W, et al. Recent progress of heterojunction ultraviolet photodetectors: Materials, integrations, and applications. Adv Funct Mater, 2020, 30, 1909909 doi: 10.1002/adfm.201909909
[46]
Li G W, Zhang K, Wu Y T, et al. Self-powered solar-blind ultraviolet photodetectors with Ga2O3 nanowires as the interlayer. Vacuum, 2023, 215, 112277 doi: 10.1016/j.vacuum.2023.112277
[47]
Yang L L, Peng Y S, Liu Z, et al. A self-powered ultraviolet photodetector based on a Ga2O3/Bi2WO6 heterojunction with low noise and stable photoresponse. Chin Phys B, 2023, 32, 047301 doi: 10.1088/1674-1056/ac7865
[48]
Yan Z Y, Li S, Yue J Y, et al. Reinforcement of double built-in electric fields in spiro-MeOTAD/Ga2O3/Si p–i–n structure for a high-sensitivity solar-blind UV photovoltaic detector. J Mater Chem C, 2021, 9, 14788 doi: 10.1039/D1TC03359J
[49]
Atilgan A, Yildiz A, Harmanci U, et al. β-Ga2O3 nanoflakes/p-Si heterojunction self-powered photodiodes. Mater Today Commun, 2020, 24, 101105 doi: 10.1016/j.mtcomm.2020.101105
[50]
Zhuo R R, Wu D, Wang Y G, et al. A self-powered solar-blind photodetector based on a MoS2/β-Ga2O3 heterojunction. J Mater Chem C, 2018, 6, 10982 doi: 10.1039/C8TC04258F
[51]
Li S, Yan Z Y, Liu Z, et al. A self-powered solar-blind photodetector with large Voc enhancing performance based on the PEDOT: PSS/Ga2O3 organic–inorganic hybrid heterojunction. J Mater Chem C, 2020, 8, 1292 doi: 10.1039/C9TC06011A
[52]
Wang Z Z, Qi J J, Yan X Q, et al. A self-powered strain senor based on a ZnO/PEDOT: PSS hybrid structure. RSC Adv, 2013, 3, 17011 doi: 10.1039/c3ra42778a
[53]
Lany S. Defect phase diagram for doping of Ga2O3. APL Mater, 2018, 6, 046103 doi: 10.1063/1.5019938
[54]
Guo D Y, Su Y L, Shi H Z, et al. Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn: Ga2O3 pn junction. ACS Nano, 2018, 12, 12827 doi: 10.1021/acsnano.8b07997
Fig. 1.  (Color online) (a) Experimental procedures of the Mist-CVD. (b) Fabrication process of the HJD−PD.

Fig. 2.  (Color online) Optical absorbance spectra of (a) PEDOT:PSS film and (b) Sn:α-Ga2O3 film (the inset calculates the Eg of the Sn:α-Ga2O3 film). (c) XRD pattern of Sn:α-Ga2O3.

Fig. 3.  (Color online) (a) Surface of the Sn:α-Ga2O3 thin film and (b) interface of Sn:α-Ga2O3 and PEDOT:PSS. (c) Cross-section SEM photograph at the interface of PEDOT:PSS and Sn:α-Ga2O3.

Fig. 4.  (Color online) (a) The XPS spectrum of the sample of the Sn:α-Ga2O3 film. (b) The high-resolution XPS spectrum of the Ga 2p1/2 and Ga 2p3/2. (c) The high-resolution XPS spectrum of the O 1s. (d) The UPS spectrum of the Sn:α-Ga2O3 film.

Fig. 5.  (Color online) Logarithmic coordinate IV curve of (a) HJD (the inset is the linear coordinate IV curve) and (b) Sn:α-Ga2O3 PD. (c) R, (d) EQE, (e) D*, and (f) the functional relationship between the Iph and light intensity (the inset is the relationships at different devices and bias).

Fig. 6.  (Color online) It curves of the HJD under different light intensities and different biases, (a) 0 V, (b) −5 V, and (c) 5 V. (d) It curves of the Sn:α-Ga2O3 PD under different light intensities and 5 V bias.

Fig. 7.  (Color online) Fitted curve of the current rise and decay processes responding to 254 nm light of HJD under (a) 0 V, (b) −5 V, and (c) 5 V. (d) Sn:α-Ga2O3 PD under 5 V bias.

Fig. 8.  (Color online) Schematic energy band diagrams of the PEDOT:PSS/Sn:α-Ga2O3 hybrid heterojunction under (a) before contact, (b) dark, and (c) ultraviolet illumination at 0 V bias.

Table 1.   Performance comparison of Ga2O3-based heterojunction PDs.

PhotodetectorTechnologyDeviceId (A)R (mA/W)D* (Jones)τr/τd (s)Ref.
PEDOT:PSS/Sn:α-Ga2O3Mist-CVDHJD@0 V7.06 × 10−115.61.14 × 10110.36/0.09this work
PEDOT:PSS/Ga2O3NWs/n-SiCVDHJD@0 V1 × 10−1026.81.4 × 10120.017/0.038[46]
Ga2O3/Bi2WO6MOCVDHJD@0 V6.3 × 10−152.21
0.132/0.069[47]
Spiro/Ga2O3/SiMOCVDHJD@0 V
4.33
0.03/0.196[48]
β-Ga2O3 nanoflakes/p-SiHYDROTHERMALHJD@0 V2.33 × 10−90.16

[49]
MoS2/β-Ga2O3
HJD@0 V9 × 10−132.051.21 × 1011
[50]
PEDOT: PSS/Ga2O3 microwireEFGHJD@0 V
39.82.4 × 10125.3 × 10−4/6.75 × 10−3[25]
PEDOT:PSS/ Ga2O3MOCVDHJD@0 V3.7 × 10−1237.49.2 × 10123.3 × 10−6/7.12 × 10−5[51]
DownLoad: CSV
[1]
Peng L, Hu L F, Fang X S. Low-dimensional nanostructure ultraviolet photodetectors. Adv Mater, 2013, 25, 5321 doi: 10.1002/adma.201301802
[2]
Alaie Z, Mohammad Nejad S, Yousefi M H. Recent advances in ultraviolet photodetectors. Mater Sci Semicond Process, 2015, 29, 16 doi: 10.1016/j.mssp.2014.02.054
[3]
Chen H Y, Liu K W, Hu L F, et al. New concept ultraviolet photodetectors. Mater Today, 2015, 18, 493 doi: 10.1016/j.mattod.2015.06.001
[4]
Shu L C, Yao S H, Xi Z Y, et al. Multi-pixels gallium oxide UV detector array and optoelectronic applications. Nanotechnology, 2023, 35, 052001 doi: 10.1088/1361-6528/ad079f
[5]
Yatskiv R, Tiagulskyi S, Grym J. Influence of crystallographic orientation on Schottky barrier formation in gallium oxide. J Electron Mater, 2020, 49, 5133 doi: 10.1007/s11664-020-07996-0
[6]
Yao Y, Gangireddy R, Kim J, et al. Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals. J Vac Sci Technol B, 2017, 35, 03D113 doi: 10.1116/1.4980042
[7]
Kaur D, Kumar M. A strategic review on gallium oxide based deep-ultraviolet photodetectors: Recent progress and future prospects. Adv Optical Mater, 2021, 9, 2002160 doi: 10.1002/adom.202002160
[8]
Kokubun Y, Miura K, Endo F, et al. Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors. Appl Phys Lett, 2007, 90, 031912 doi: 10.1063/1.2432946
[9]
Chen X H, Xu Y, Zhou D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures. ACS Appl Mater Interfaces, 2017, 9, 36997 doi: 10.1021/acsami.7b09812
[10]
Kan S I, Takemoto S, Kaneko K, et al. Study on corundum-structured p-type iridium oxide thin films and band alignment at iridium oxide/gallium oxide hetero-junction. 2018 IEEE CPMT Symposium Japan (ICSJ), 2018, 95 doi: 10.1109/ICSJ.2018.8602906
[11]
Sun B Y, Sun W M, Li S, et al. High-sensitive, self-powered deep UV photodetector based on p-CuSCN/n-Ga2O3 thin film heterojunction. Opt Commun, 2022, 504, 127483 doi: 10.1016/j.optcom.2021.127483
[12]
Ma G L, Gao A, Liu Z, et al. Solution spin-coated BiFeO3 onto Ga2O3 towards self-powered deep UV photo detector of Ga2O3/BiFeO3 heterojunction. IEEE Sens J, 2021, 21, 23987 doi: 10.1109/JSEN.2021.3115719
[13]
Qi X H, Yue J Y, Ji X Q, et al. A deep-ultraviolet photodetector of a β-Ga2O3/CuBiI4 heterojunction highlighting ultra-high sensitivity and responsivity. Thin Solid Films, 2022, 757, 139397 doi: 10.1016/j.tsf.2022.139397
[14]
Takano T, Masunaga H, Fujiwara A, et al. PEDOT nanocrystal in highly conductive PEDOT: PSS polymer films. Macromolecules, 2012, 45, 3859 doi: 10.1021/ma300120g
[15]
Zhao Z H, Richardson G F, Meng Q S, et al. PEDOT-based composites as electrode materials for supercapacitors. Nanotechnology, 2016, 27, 042001 doi: 10.1088/0957-4484/27/4/042001
[16]
Sun K, Zhang S P, Li P C, et al. Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices. J Mater Sci Mater Electron, 2015, 26, 4438 doi: 10.1007/s10854-015-2895-5
[17]
Feng B Y, Li Z C, Cheng F Y, et al. Investigation of β-Ga2O3 film growth mechanism on c-plane sapphire substrate by ozone molecular beam epitaxy. Phys Status Solidi A, 2021, 218, 2000457 doi: 10.1002/pssa.202000457
[18]
Lu C, Ji X Q, Liu Z, et al. A review of metal–semiconductor contacts for β-Ga2O3. J Phys D: Appl Phys, 2022, 55, 463002 doi: 10.1088/1361-6463/ac8818
[19]
Dang G T, Allen M W, Furuta M, et al. Electronic devices fabricated on mist-CVD-grown oxide semiconductors and their applications. Jpn J Appl Phys, 2019, 58, 090606 doi: 10.7567/1347-4065/ab2195
[20]
Akaiwa K, Kaneko K, Ichino K, et al. Conductivity control of Sn-doped α-Ga2O3 thin films grown on sapphire substrates. Jpn J Appl Phys, 2016, 55, 1202BA doi: 10.7567/JJAP.55.1202BA
[21]
Akaiwa K, Fujita S. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 2012, 51, 070203 doi: 10.1143/JJAP.51.070203
[22]
Chikoidze E, Fellous A, Perez-Tomas A, et al. P-type β-gallium oxide: A new perspective for power and optoelectronic devices. Mater Today Phys, 2017, 3, 118 doi: 10.1016/j.mtphys.2017.10.002
[23]
Jinno R, Yoshimura N, Kaneko K, et al. Enhancement of epitaxial lateral overgrowth in the mist chemical vapor deposition of α using a-plane sapphire substrate. Jpn J Appl Phys, 2019, 58, 120912 doi: 10.7567/1347-4065/ab55c6
[24]
Yao S H, Liu Z, Zhang M L, et al. Photogain-enhanced signal-to-noise performance of a polycrystalline Sn: Ga2O3 UV detector via impurity-level transition and multiple carrier transport. ACS Appl Electron Mater, 2023, 5, 7061 doi: 10.1021/acsaelm.3c01371
[25]
Zheng Z H, Wang W, Wu F, et al. Flexible assembly of the PEDOT: PSS/exfoliated β-Ga2O3 microwire hybrid heterojunction for high-performance self-powered solar-blind photodetector. Opt Express, 2022, 30, 21822 doi: 10.1364/OE.461342
[26]
Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi B, 1966, 15, 627 doi: 10.1002/pssb.19660150224
[27]
Yasuoka T, Liu L, Ozaki T, et al. The effect of HCl on the α-Ga2O3 thin films fabricated by third generation mist chemical vapor deposition. AIP Adv, 2021, 11, 045123 doi: 10.1063/5.0051050
[28]
Ryou H, Yoo T H, Yoon Y, et al. Hydrothermal synthesis and photocatalytic property of Sn-doped β-Ga2O3 nanostructure. ECS J Solid State Sci Technol, 2020, 9, 045009 doi: 10.1149/2162-8777/ab8b4b
[29]
Li S, Yue J Y, Ji X Q, et al. Oxygen vacancies modulating the photodetector performances in ε-Ga2O3 thin films. J Mater Chem C, 2021, 9, 5437 doi: 10.1039/D1TC00616A
[30]
Ma W Y, Zhang M L, Wang L, et al. Fermi-level splitting-induced light-intensity-dependent recombination in fully ultra-wide bandgap deep-ultraviolet photodetector. IEEE J Electron Devices Soc, 2024, 12, 221 doi: 10.1109/JEDS.2024.3373905
[31]
Mazzio K A, Kojda D, Rubio-Govea R, et al. P-type-to-N-type transition in hybrid AgxTe/PEDOT: PSS thermoelectric materials via stoichiometric control during solution-based synthesis. ACS Appl Energy Mater, 2020, 3, 10734 doi: 10.1021/acsaem.0c01774
[32]
Sun X Y, Chen X H, Hao J G, et al. A self-powered solar-blind photodetector based on polyaniline/α-Ga2O3 p–n heterojunction. Appl Phys Lett, 2021, 119, 141601 doi: 10.1063/5.0059061
[33]
Xi Z Y, Yang L L, Liu Z, et al. Study on PECVD-hetero-grown β-Ga2O3 thin film and temperature-modulated solar-blind UV photodetection. J Phys D: Appl Phys, 2024, 57, 085101 doi: 10.1088/1361-6463/ad0bc4
[34]
Li L, Liu Z, Yao S H, et al. High photo-responsivity deep-UV detector based on binary SnO2-Ga2O3 compound nanowires array. IEEE Photonics Technol Lett, 2024, 36, 47 doi: 10.1109/LPT.2023.3335109
[35]
Lv Z X, Yan S Q, Mu W X, et al. A high responsivity and photosensitivity self-powered UV photodetector constructed by the CuZnS/Ga2O3 heterojunction. Adv Mater Interfaces, 2023, 10, 2202130 doi: 10.1002/admi.202202130
[36]
Yu J G, Lou J S, Wang Z, et al. Surface modification of β-Ga2O3 layer using pt nanoparticles for improved deep UV photodetector performance. J Alloys Compd, 2021, 872, 159508 doi: 10.1016/j.jallcom.2021.159508
[37]
Wang Y C, Wu C, Guo D Y, et al. All-oxide NiO/Ga2O3 p–n junction for self-powered UV photodetector. ACS Appl Electron Mater, 2020, 2, 2032 doi: 10.1021/acsaelm.0c00301
[38]
Kan H, Zheng W, Fu C, et al. Ultrawide band gap oxide nanodots (Eg > 4.8 eV) for a high-performance deep ultraviolet photovoltaic detector. ACS Appl Mater Interfaces, 2020, 12, 6030 doi: 10.1021/acsami.9b17679
[39]
Kaneko K, Uno K, Jinno R, et al. Prospects for phase engineering of semi-stable Ga2O3 semiconductor thin films using mist chemical vapor deposition. J Appl Phys, 2022, 131, 090902 doi: 10.1063/5.0069554
[40]
Li X, Lu H L, Ma H P, et al. Chemical, optical, and electrical characterization of Ga2O3 thin films grown by plasma-enhanced atomic layer deposition. Curr Appl Phys, 2019, 19, 72 doi: 10.1016/j.cap.2018.11.013
[41]
Li S, Zhi Y S, Lu C, et al. Broadband ultraviolet self-powered photodetector constructed on exfoliated β-Ga2O3/CuI core-shell microwire heterojunction with superior reliability. J Phys Chem Lett, 2021, 12, 447 doi: 10.1021/acs.jpclett.0c03382
[42]
Liu Z, Du L, Zhang S H, et al. Synergetic effect of photoconductive gain and persistent photocurrent in a high-photoresponse Ga2O3 deep-ultraviolet photodetector. IEEE Trans Electron Devices, 2022, 69, 5595 doi: 10.1109/TED.2022.3195473
[43]
Liu N S, Fang G J, Zeng W, et al. Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction. ACS Appl Mater Interfaces, 2010, 2, 1973 doi: 10.1021/am100277q
[44]
Chen T W, Zhang X D, Ma Y J, et al. Self-powered and spectrally distinctive nanoporous Ga2O3/GaN epitaxial heterojunction UV photodetectors. Adv Photonics Res, 2021, 2, 2100049 doi: 10.1002/adpr.202100049
[45]
Chen J X, Ouyang W X, Yang W, et al. Recent progress of heterojunction ultraviolet photodetectors: Materials, integrations, and applications. Adv Funct Mater, 2020, 30, 1909909 doi: 10.1002/adfm.201909909
[46]
Li G W, Zhang K, Wu Y T, et al. Self-powered solar-blind ultraviolet photodetectors with Ga2O3 nanowires as the interlayer. Vacuum, 2023, 215, 112277 doi: 10.1016/j.vacuum.2023.112277
[47]
Yang L L, Peng Y S, Liu Z, et al. A self-powered ultraviolet photodetector based on a Ga2O3/Bi2WO6 heterojunction with low noise and stable photoresponse. Chin Phys B, 2023, 32, 047301 doi: 10.1088/1674-1056/ac7865
[48]
Yan Z Y, Li S, Yue J Y, et al. Reinforcement of double built-in electric fields in spiro-MeOTAD/Ga2O3/Si p–i–n structure for a high-sensitivity solar-blind UV photovoltaic detector. J Mater Chem C, 2021, 9, 14788 doi: 10.1039/D1TC03359J
[49]
Atilgan A, Yildiz A, Harmanci U, et al. β-Ga2O3 nanoflakes/p-Si heterojunction self-powered photodiodes. Mater Today Commun, 2020, 24, 101105 doi: 10.1016/j.mtcomm.2020.101105
[50]
Zhuo R R, Wu D, Wang Y G, et al. A self-powered solar-blind photodetector based on a MoS2/β-Ga2O3 heterojunction. J Mater Chem C, 2018, 6, 10982 doi: 10.1039/C8TC04258F
[51]
Li S, Yan Z Y, Liu Z, et al. A self-powered solar-blind photodetector with large Voc enhancing performance based on the PEDOT: PSS/Ga2O3 organic–inorganic hybrid heterojunction. J Mater Chem C, 2020, 8, 1292 doi: 10.1039/C9TC06011A
[52]
Wang Z Z, Qi J J, Yan X Q, et al. A self-powered strain senor based on a ZnO/PEDOT: PSS hybrid structure. RSC Adv, 2013, 3, 17011 doi: 10.1039/c3ra42778a
[53]
Lany S. Defect phase diagram for doping of Ga2O3. APL Mater, 2018, 6, 046103 doi: 10.1063/1.5019938
[54]
Guo D Y, Su Y L, Shi H Z, et al. Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn: Ga2O3 pn junction. ACS Nano, 2018, 12, 12827 doi: 10.1021/acsnano.8b07997
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 622 Times PDF downloads: 62 Times Cited by: 0 Times

    History

    Received: 13 June 2024 Revised: 27 August 2024 Online: Accepted Manuscript: 25 September 2024Uncorrected proof: 27 September 2024Published: 15 December 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yifan Yao, Suhao Yao, Jiaqing Yuan, Zeng Liu, Maolin Zhang, Lili Yang, Weihua Tang. Self-powered PEDOT:PSS/Sn:α-Ga2O3 heterojunction UV photodetector via organic/inorganic hybrid ink engineering[J]. Journal of Semiconductors, 2024, 45(12): 122402. doi: 10.1088/1674-4926/24050048 ****Y F Yao, S H Yao, J Q Yuan, Z Liu, M L Zhang, L L Yang, and W H Tang, Self-powered PEDOT:PSS/Sn:α-Ga2O3 heterojunction UV photodetector via organic/inorganic hybrid ink engineering[J]. J. Semicond., 2024, 45(12), 122402 doi: 10.1088/1674-4926/24050048
      Citation:
      Yifan Yao, Suhao Yao, Jiaqing Yuan, Zeng Liu, Maolin Zhang, Lili Yang, Weihua Tang. Self-powered PEDOT:PSS/Sn:α-Ga2O3 heterojunction UV photodetector via organic/inorganic hybrid ink engineering[J]. Journal of Semiconductors, 2024, 45(12): 122402. doi: 10.1088/1674-4926/24050048 ****
      Y F Yao, S H Yao, J Q Yuan, Z Liu, M L Zhang, L L Yang, and W H Tang, Self-powered PEDOT:PSS/Sn:α-Ga2O3 heterojunction UV photodetector via organic/inorganic hybrid ink engineering[J]. J. Semicond., 2024, 45(12), 122402 doi: 10.1088/1674-4926/24050048

      Self-powered PEDOT:PSS/Sn:α-Ga2O3 heterojunction UV photodetector via organic/inorganic hybrid ink engineering

      DOI: 10.1088/1674-4926/24050048
      More Information
      • Yifan Yao received his B.S. degree from Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, China. He is now a postgraduate student at NJUPT under the supervision of Professor Weihua Tang. His research focuses on gallium oxide doping technology and heterojunction photodetectors based on this technology
      • Lili Yang received her B.E. degree from Nanjing Tech University, Nanjing, Jiangsu, China, and Ph.D. degree from Shanghai Institute of Ceramics, Chinese Academy of Sciences (SIC, CAS), Shanghai, China, and jointly educated in The City College of New York (CCNY), New York, USA. Currently, she is a lecturer with College of Integrated Circuit Science and Engineering at Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, China
      • Weihua Tang (Member, IEEE) was born in Yancheng, Jiangsu, China. He received the Ph.D. degree from the Institute of Physics (IOP), Chinese Academy of Sciences (CAS), Beijing. He was selected in the Hundred-Talent Program of CAS in 2001, a National Candidate of "New Century Talent Project" in 2006, and enjoyed special government allowance in 2014. He is currently a Full Professor with the Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, Jiangsu, China. His current research interests include gallium oxide (Ga2O3) photodetectors and power devices fabrications and characterizations
      • Corresponding author: liliyang@njupt.edu.cnwhtang@njupt.edu.cn
      • Received Date: 2024-06-13
      • Revised Date: 2024-08-27
      • Available Online: 2024-09-25

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return