Citation: |
Yifan Yao, Suhao Yao, Jiaqing Yuan, Zeng Liu, Maolin Zhang, Lili Yang, Weihua Tang. Self-powered PEDOT:PSS/Sn:α-Ga2O3 heterojunction UV photodetector via organic/inorganic hybrid ink engineering[J]. Journal of Semiconductors, 2024, 45(12): 122402. doi: 10.1088/1674-4926/24050048
****
Y F Yao, S H Yao, J Q Yuan, Z Liu, M L Zhang, L L Yang, and W H Tang, Self-powered PEDOT:PSS/Sn:α-Ga2O3 heterojunction UV photodetector via organic/inorganic hybrid ink engineering[J]. J. Semicond., 2024, 45(12), 122402 doi: 10.1088/1674-4926/24050048
|
Self-powered PEDOT:PSS/Sn:α-Ga2O3 heterojunction UV photodetector via organic/inorganic hybrid ink engineering
DOI: 10.1088/1674-4926/24050048
More Information
-
Abstract
In this work, a PEDOT:PSS/Sn:α-Ga2O3 hybrid heterojunction diode (HJD) photodetector was fabricated by spin-coating highly conductive PEDOT:PSS aqueous solution on the mist chemical vapor deposition (Mist-CVD) grown Sn:α-Ga2O3 film. This approach provides a facile and low-cost p-PEDOT:PSS/n-Sn:α-Ga2O3 spin-coating method that facilitates self-powering performance through p−n junction formation. A typical type-Ⅰ heterojunction is formed at the interface of Sn:α-Ga2O3 film and PEDOT:PSS, and contributes to a significant photovoltaic effect with an open-circuit voltage (Voc) of 0.4 V under the 254 nm ultraviolet (UV) light. When operating in self-powered mode, the HJD exhibits excellent photo-response performance including an outstanding photo-current of 10.9 nA, a rapid rise/decay time of 0.38/0.28 s, and a large on/off ratio of 91.2. Additionally, the HJD also possesses excellent photo-detection performance with a high responsivity of 5.61 mA/W and a good detectivity of 1.15 × 1011 Jones at 0 V bias under 254 nm UV light illumination. Overall, this work may explore the potential range of self-powered and high-performance UV photodetectors. -
References
[1] Peng L, Hu L F, Fang X S. Low-dimensional nanostructure ultraviolet photodetectors. Adv Mater, 2013, 25, 5321 doi: 10.1002/adma.201301802[2] Alaie Z, Mohammad Nejad S, Yousefi M H. Recent advances in ultraviolet photodetectors. Mater Sci Semicond Process, 2015, 29, 16 doi: 10.1016/j.mssp.2014.02.054[3] Chen H Y, Liu K W, Hu L F, et al. New concept ultraviolet photodetectors. Mater Today, 2015, 18, 493 doi: 10.1016/j.mattod.2015.06.001[4] Shu L C, Yao S H, Xi Z Y, et al. Multi-pixels gallium oxide UV detector array and optoelectronic applications. Nanotechnology, 2023, 35, 052001 doi: 10.1088/1361-6528/ad079f[5] Yatskiv R, Tiagulskyi S, Grym J. Influence of crystallographic orientation on Schottky barrier formation in gallium oxide. J Electron Mater, 2020, 49, 5133 doi: 10.1007/s11664-020-07996-0[6] Yao Y, Gangireddy R, Kim J, et al. Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals. J Vac Sci Technol B, 2017, 35, 03D113 doi: 10.1116/1.4980042[7] Kaur D, Kumar M. A strategic review on gallium oxide based deep-ultraviolet photodetectors: Recent progress and future prospects. Adv Optical Mater, 2021, 9, 2002160 doi: 10.1002/adom.202002160[8] Kokubun Y, Miura K, Endo F, et al. Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors. Appl Phys Lett, 2007, 90, 031912 doi: 10.1063/1.2432946[9] Chen X H, Xu Y, Zhou D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures. ACS Appl Mater Interfaces, 2017, 9, 36997 doi: 10.1021/acsami.7b09812[10] Kan S I, Takemoto S, Kaneko K, et al. Study on corundum-structured p-type iridium oxide thin films and band alignment at iridium oxide/gallium oxide hetero-junction. 2018 IEEE CPMT Symposium Japan (ICSJ), 2018, 95 doi: 10.1109/ICSJ.2018.8602906[11] Sun B Y, Sun W M, Li S, et al. High-sensitive, self-powered deep UV photodetector based on p-CuSCN/n-Ga2O3 thin film heterojunction. Opt Commun, 2022, 504, 127483 doi: 10.1016/j.optcom.2021.127483[12] Ma G L, Gao A, Liu Z, et al. Solution spin-coated BiFeO3 onto Ga2O3 towards self-powered deep UV photo detector of Ga2O3/BiFeO3 heterojunction. IEEE Sens J, 2021, 21, 23987 doi: 10.1109/JSEN.2021.3115719[13] Qi X H, Yue J Y, Ji X Q, et al. A deep-ultraviolet photodetector of a β-Ga2O3/CuBiI4 heterojunction highlighting ultra-high sensitivity and responsivity. Thin Solid Films, 2022, 757, 139397 doi: 10.1016/j.tsf.2022.139397[14] Takano T, Masunaga H, Fujiwara A, et al. PEDOT nanocrystal in highly conductive PEDOT: PSS polymer films. Macromolecules, 2012, 45, 3859 doi: 10.1021/ma300120g[15] Zhao Z H, Richardson G F, Meng Q S, et al. PEDOT-based composites as electrode materials for supercapacitors. Nanotechnology, 2016, 27, 042001 doi: 10.1088/0957-4484/27/4/042001[16] Sun K, Zhang S P, Li P C, et al. Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices. J Mater Sci Mater Electron, 2015, 26, 4438 doi: 10.1007/s10854-015-2895-5[17] Feng B Y, Li Z C, Cheng F Y, et al. Investigation of β-Ga2O3 film growth mechanism on c-plane sapphire substrate by ozone molecular beam epitaxy. Phys Status Solidi A, 2021, 218, 2000457 doi: 10.1002/pssa.202000457[18] Lu C, Ji X Q, Liu Z, et al. A review of metal–semiconductor contacts for β-Ga2O3. J Phys D: Appl Phys, 2022, 55, 463002 doi: 10.1088/1361-6463/ac8818[19] Dang G T, Allen M W, Furuta M, et al. Electronic devices fabricated on mist-CVD-grown oxide semiconductors and their applications. Jpn J Appl Phys, 2019, 58, 090606 doi: 10.7567/1347-4065/ab2195[20] Akaiwa K, Kaneko K, Ichino K, et al. Conductivity control of Sn-doped α-Ga2O3 thin films grown on sapphire substrates. Jpn J Appl Phys, 2016, 55, 1202BA doi: 10.7567/JJAP.55.1202BA[21] Akaiwa K, Fujita S. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 2012, 51, 070203 doi: 10.1143/JJAP.51.070203[22] Chikoidze E, Fellous A, Perez-Tomas A, et al. P-type β-gallium oxide: A new perspective for power and optoelectronic devices. Mater Today Phys, 2017, 3, 118 doi: 10.1016/j.mtphys.2017.10.002[23] Jinno R, Yoshimura N, Kaneko K, et al. Enhancement of epitaxial lateral overgrowth in the mist chemical vapor deposition of α using a-plane sapphire substrate. Jpn J Appl Phys, 2019, 58, 120912 doi: 10.7567/1347-4065/ab55c6[24] Yao S H, Liu Z, Zhang M L, et al. Photogain-enhanced signal-to-noise performance of a polycrystalline Sn: Ga2O3 UV detector via impurity-level transition and multiple carrier transport. ACS Appl Electron Mater, 2023, 5, 7061 doi: 10.1021/acsaelm.3c01371[25] Zheng Z H, Wang W, Wu F, et al. Flexible assembly of the PEDOT: PSS/exfoliated β-Ga2O3 microwire hybrid heterojunction for high-performance self-powered solar-blind photodetector. Opt Express, 2022, 30, 21822 doi: 10.1364/OE.461342[26] Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi B, 1966, 15, 627 doi: 10.1002/pssb.19660150224[27] Yasuoka T, Liu L, Ozaki T, et al. The effect of HCl on the α-Ga2O3 thin films fabricated by third generation mist chemical vapor deposition. AIP Adv, 2021, 11, 045123 doi: 10.1063/5.0051050[28] Ryou H, Yoo T H, Yoon Y, et al. Hydrothermal synthesis and photocatalytic property of Sn-doped β-Ga2O3 nanostructure. ECS J Solid State Sci Technol, 2020, 9, 045009 doi: 10.1149/2162-8777/ab8b4b[29] Li S, Yue J Y, Ji X Q, et al. Oxygen vacancies modulating the photodetector performances in ε-Ga2O3 thin films. J Mater Chem C, 2021, 9, 5437 doi: 10.1039/D1TC00616A[30] Ma W Y, Zhang M L, Wang L, et al. Fermi-level splitting-induced light-intensity-dependent recombination in fully ultra-wide bandgap deep-ultraviolet photodetector. IEEE J Electron Devices Soc, 2024, 12, 221 doi: 10.1109/JEDS.2024.3373905[31] Mazzio K A, Kojda D, Rubio-Govea R, et al. P-type-to-N-type transition in hybrid AgxTe/PEDOT: PSS thermoelectric materials via stoichiometric control during solution-based synthesis. ACS Appl Energy Mater, 2020, 3, 10734 doi: 10.1021/acsaem.0c01774[32] Sun X Y, Chen X H, Hao J G, et al. A self-powered solar-blind photodetector based on polyaniline/α-Ga2O3 p–n heterojunction. Appl Phys Lett, 2021, 119, 141601 doi: 10.1063/5.0059061[33] Xi Z Y, Yang L L, Liu Z, et al. Study on PECVD-hetero-grown β-Ga2O3 thin film and temperature-modulated solar-blind UV photodetection. J Phys D: Appl Phys, 2024, 57, 085101 doi: 10.1088/1361-6463/ad0bc4[34] Li L, Liu Z, Yao S H, et al. High photo-responsivity deep-UV detector based on binary SnO2-Ga2O3 compound nanowires array. IEEE Photonics Technol Lett, 2024, 36, 47 doi: 10.1109/LPT.2023.3335109[35] Lv Z X, Yan S Q, Mu W X, et al. A high responsivity and photosensitivity self-powered UV photodetector constructed by the CuZnS/Ga2O3 heterojunction. Adv Mater Interfaces, 2023, 10, 2202130 doi: 10.1002/admi.202202130[36] Yu J G, Lou J S, Wang Z, et al. Surface modification of β-Ga2O3 layer using pt nanoparticles for improved deep UV photodetector performance. J Alloys Compd, 2021, 872, 159508 doi: 10.1016/j.jallcom.2021.159508[37] Wang Y C, Wu C, Guo D Y, et al. All-oxide NiO/Ga2O3 p–n junction for self-powered UV photodetector. ACS Appl Electron Mater, 2020, 2, 2032 doi: 10.1021/acsaelm.0c00301[38] Kan H, Zheng W, Fu C, et al. Ultrawide band gap oxide nanodots (Eg > 4.8 eV) for a high-performance deep ultraviolet photovoltaic detector. ACS Appl Mater Interfaces, 2020, 12, 6030 doi: 10.1021/acsami.9b17679[39] Kaneko K, Uno K, Jinno R, et al. Prospects for phase engineering of semi-stable Ga2O3 semiconductor thin films using mist chemical vapor deposition. J Appl Phys, 2022, 131, 090902 doi: 10.1063/5.0069554[40] Li X, Lu H L, Ma H P, et al. Chemical, optical, and electrical characterization of Ga2O3 thin films grown by plasma-enhanced atomic layer deposition. Curr Appl Phys, 2019, 19, 72 doi: 10.1016/j.cap.2018.11.013[41] Li S, Zhi Y S, Lu C, et al. Broadband ultraviolet self-powered photodetector constructed on exfoliated β-Ga2O3/CuI core-shell microwire heterojunction with superior reliability. J Phys Chem Lett, 2021, 12, 447 doi: 10.1021/acs.jpclett.0c03382[42] Liu Z, Du L, Zhang S H, et al. Synergetic effect of photoconductive gain and persistent photocurrent in a high-photoresponse Ga2O3 deep-ultraviolet photodetector. IEEE Trans Electron Devices, 2022, 69, 5595 doi: 10.1109/TED.2022.3195473[43] Liu N S, Fang G J, Zeng W, et al. Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction. ACS Appl Mater Interfaces, 2010, 2, 1973 doi: 10.1021/am100277q[44] Chen T W, Zhang X D, Ma Y J, et al. Self-powered and spectrally distinctive nanoporous Ga2O3/GaN epitaxial heterojunction UV photodetectors. Adv Photonics Res, 2021, 2, 2100049 doi: 10.1002/adpr.202100049[45] Chen J X, Ouyang W X, Yang W, et al. Recent progress of heterojunction ultraviolet photodetectors: Materials, integrations, and applications. Adv Funct Mater, 2020, 30, 1909909 doi: 10.1002/adfm.201909909[46] Li G W, Zhang K, Wu Y T, et al. Self-powered solar-blind ultraviolet photodetectors with Ga2O3 nanowires as the interlayer. Vacuum, 2023, 215, 112277 doi: 10.1016/j.vacuum.2023.112277[47] Yang L L, Peng Y S, Liu Z, et al. A self-powered ultraviolet photodetector based on a Ga2O3/Bi2WO6 heterojunction with low noise and stable photoresponse. Chin Phys B, 2023, 32, 047301 doi: 10.1088/1674-1056/ac7865[48] Yan Z Y, Li S, Yue J Y, et al. Reinforcement of double built-in electric fields in spiro-MeOTAD/Ga2O3/Si p–i–n structure for a high-sensitivity solar-blind UV photovoltaic detector. J Mater Chem C, 2021, 9, 14788 doi: 10.1039/D1TC03359J[49] Atilgan A, Yildiz A, Harmanci U, et al. β-Ga2O3 nanoflakes/p-Si heterojunction self-powered photodiodes. Mater Today Commun, 2020, 24, 101105 doi: 10.1016/j.mtcomm.2020.101105[50] Zhuo R R, Wu D, Wang Y G, et al. A self-powered solar-blind photodetector based on a MoS2/β-Ga2O3 heterojunction. J Mater Chem C, 2018, 6, 10982 doi: 10.1039/C8TC04258F[51] Li S, Yan Z Y, Liu Z, et al. A self-powered solar-blind photodetector with large Voc enhancing performance based on the PEDOT: PSS/Ga2O3 organic–inorganic hybrid heterojunction. J Mater Chem C, 2020, 8, 1292 doi: 10.1039/C9TC06011A[52] Wang Z Z, Qi J J, Yan X Q, et al. A self-powered strain senor based on a ZnO/PEDOT: PSS hybrid structure. RSC Adv, 2013, 3, 17011 doi: 10.1039/c3ra42778a[53] Lany S. Defect phase diagram for doping of Ga2O3. APL Mater, 2018, 6, 046103 doi: 10.1063/1.5019938[54] Guo D Y, Su Y L, Shi H Z, et al. Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn: Ga2O3 pn junction. ACS Nano, 2018, 12, 12827 doi: 10.1021/acsnano.8b07997 -
Proportional views