J. Semicond. > 2024, Volume 45 > Issue 12 > 122501

ARTICLES

Short-circuit failure modes and mechanism investigation of 1200 V planar SiC MOSFETs

Yi Huang1, Qiurui Chen1, Rongyao Ma2, Kaifeng Tang2, Qi Wang1, Hongsheng Zhang1, Ji Ding2, Dandan Xu2, Sheng Gao1, 2, and Genquan Han3

+ Author Affiliations

 Corresponding author: Sheng Gao, gaosheng@cqupt.edu.cn

DOI: 10.1088/1674-4926/24060009

PDF

Turn off MathJax

Abstract: This paper presents a comprehensive analysis of the short-circuit failure mechanisms in commercial 1.2 kV planar silicon carbide (SiC) metal–oxide–semiconductor field-effect transistors (MOSFETs) under 400 and 800 V bus voltage conditions. The study compares two products with varying short-circuit tolerances, scrutinizing their external characteristics and intrinsic factors that influence their short-circuit endurance. Experimental and numerical analyses reveal that at 400 V, the differential thermal expansion between the source metal and the dielectric leads to cracking, which in turn facilitates the infiltration of liquid metal and results in a gate–source short circuit. At 800 V, the failure mechanism is markedly different, attributed to the thermal carrier effect leading to the degradation of the gate oxide, which impedes the device's capacity to switch off, thereby triggering thermal runaway. The paper proposes strategies to augment the short-circuit robustness of SiC MOSFETs at both voltage levels, with the objective of fortifying the device's resistance to such failures.

Key words: SiC MOSFETsshort-circuit failure modemechanical stressescrackshot spot



[1]
Yuan X B, Laird I, Walder S. Opportunities, challenges, and potential solutions in the application of fast-switching SiC power devices and converters. IEEE Trans Power Electron, 2021, 36(4), 3925 doi: 10.1109/TPEL.2020.3024862
[2]
He J B, Zhao T F, Jing X, et al. Application of wide bandgap devices in renewable energy systems-Benefits and challenges. 2014 International Conference on Renewable Energy Research and Application (ICRERA), 2014, 749 doi: 10.1109/ICRERA.2014.7016485
[3]
Ceccarelli L, Reigosa P D, Iannuzzo F, et al. A survey of SiC power MOSFETs short-circuit robustness and failure mode analysis. Microelectron Reliab, 2017, 76/77, 272 doi: 10.1016/j.microrel.2017.06.093
[4]
Pérez-Tomás A, Brosselard P, Godignon P, et al. Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors. J Appl Phys, 2006, 100, 114508 doi: 10.1063/1.2395597
[5]
Rodríguez-Blanco M A, Vázquez-Pérez A, Hernández-González L, et al. Fault detection for IGBT using adaptive thresholds during the turn-on transient. IEEE Trans Ind Electron, 2015, 62(3), 1975 doi: 10.1109/TIE.2014.2364154
[6]
Fayyaz A, Yang L, Castellazzi A. Transient robustness testing of silicon carbide (SiC) power MOSFETs. 2013 15th European Conference on Power Electronics and Applications (EPE), 2013, 1 doi: 10.1109/EPE.2013.6634645
[7]
Lefebvre S, Khatir Z, Saint-Eve F. Experimental behavior of single-chip IGBT and COOLMOS devices under repetitive short-circuit conditions. IEEE Trans Electron Devices, 2005, 52(2), 276 doi: 10.1109/TED.2004.842714
[8]
Romano G, Maresca L, Riccio M, et al. Short-circuit failure mechanism of SiC power MOSFETs. 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), 2015, 345
[9]
Lin C B, Wu J P, Xu H Y, et al. Comparison and analysis of short circuit performance of 1200V SiC MOSFETs. 2020 17th China International Forum on Solid State Lighting & 2020 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), 2020, 81 doi: 10.1109/SSLChinaIFWS51786.2020.9308698
[10]
Zhou X T, Su H Y, Wang Y, et al. Investigations on the degradation of 1.2-kV 4H-SiC MOSFETs under repetitive short-circuit tests. IEEE Trans Electron Devices, 2016, 63(11), 4346 doi: 10.1109/TED.2016.2606882
[11]
Du H, Diaz Reigosa P, Ceccarelli L, et al. Impact of repetitive short-circuit tests on the normal operation of SiC MOSFETs considering case temperature influence. IEEE J Emerg Sel Top Power Electron, 2020, 8(1), 195 doi: 10.1109/JESTPE.2019.2942364
[12]
Awwad A E, Dieckerhoff S. Short-circuit evaluation and overcurrent protection for SiC power MOSFETs. 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe), 2015, 1 doi: 10.1109/EPE.2015.7311701
[13]
Deng X C, Zhu H, Li X, et al. Investigation and failure mode of asymmetric and double trench SiC mosfets under avalanche conditions. IEEE Trans Power Electron, 2020, 35(8), 8524 doi: 10.1109/TPEL.2020.2967497
[14]
Tsibizov A, Kovačević-Badstübner I, Kakarla B, et al. Accurate temperature estimation of SiC power mosfets under extreme operating conditions. IEEE Trans Power Electron, 2020, 35(2), 1855 doi: 10.1109/TPEL.2019.2917221
[15]
An J J, Namai M, Yano H, et al. Methodology for enhanced short-circuit capability of SiC MOSFETs. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2018, 391 doi: 10.1109/ISPSD.2018.8393685
[16]
Wang Z Q, Shi X J, Tolbert L M, et al. Temperature-dependent short-circuit capability of silicon carbide power MOSFETs. IEEE Trans Power Electron, 2016, 31(2), 1555 doi: 10.1109/TPEL.2015.2416358
Fig. 1.  (Color online) Single pulse short-circuit test bench. (a) Schematic diagram and (b) physical diagram.

Fig. 2.  (Color online) Short-circuit waveform of SiC MOSFETs at 400 V DC voltage. (a) Product A, (b) Product B.

Fig. 3.  (Color online) Short-circuit waveform of SiC MOSFETs at 800 V DC voltage. (a) Product A, (b) Product B.

Fig. 4.  (Color online) Chip surface of post-failure SiC MOSFETs after short circuit. (a) 400 V, (b) 800 V.

Fig. 5.  (Color online) (a) Gate−source leakage current and (b) drain−source leakage current before and after opening the lid.

Fig. 6.  (Color online) Hot spot location. (a) Over all view of chip, (b) zoomed in the hot spot.

Fig. 7.  (Color online) FIB-TEM image at the hot spot.

Fig. 8.  (Color online) SiC MOSFET structure schematic diagram.

Fig. 9.  (Color online) Comparison of short-circuit characteristics between simulated and measured devices at 400 V DC bias voltage.

Fig. 10.  (Color online) (a) Current distribution and (b) temperature distribution for short-circuit end transient at 400 V DC bias voltage.

Fig. 11.  (Color online) Comparison of short-circuit characteristics between simulated and measured devices at 800 V DC bias voltage.

Fig. 12.  (Color online) (a) Electrical-field along SiC/SiO2 interface and (b) impact ionization distribution for short-circuit end transient at 800 V DC bias voltage.

[1]
Yuan X B, Laird I, Walder S. Opportunities, challenges, and potential solutions in the application of fast-switching SiC power devices and converters. IEEE Trans Power Electron, 2021, 36(4), 3925 doi: 10.1109/TPEL.2020.3024862
[2]
He J B, Zhao T F, Jing X, et al. Application of wide bandgap devices in renewable energy systems-Benefits and challenges. 2014 International Conference on Renewable Energy Research and Application (ICRERA), 2014, 749 doi: 10.1109/ICRERA.2014.7016485
[3]
Ceccarelli L, Reigosa P D, Iannuzzo F, et al. A survey of SiC power MOSFETs short-circuit robustness and failure mode analysis. Microelectron Reliab, 2017, 76/77, 272 doi: 10.1016/j.microrel.2017.06.093
[4]
Pérez-Tomás A, Brosselard P, Godignon P, et al. Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors. J Appl Phys, 2006, 100, 114508 doi: 10.1063/1.2395597
[5]
Rodríguez-Blanco M A, Vázquez-Pérez A, Hernández-González L, et al. Fault detection for IGBT using adaptive thresholds during the turn-on transient. IEEE Trans Ind Electron, 2015, 62(3), 1975 doi: 10.1109/TIE.2014.2364154
[6]
Fayyaz A, Yang L, Castellazzi A. Transient robustness testing of silicon carbide (SiC) power MOSFETs. 2013 15th European Conference on Power Electronics and Applications (EPE), 2013, 1 doi: 10.1109/EPE.2013.6634645
[7]
Lefebvre S, Khatir Z, Saint-Eve F. Experimental behavior of single-chip IGBT and COOLMOS devices under repetitive short-circuit conditions. IEEE Trans Electron Devices, 2005, 52(2), 276 doi: 10.1109/TED.2004.842714
[8]
Romano G, Maresca L, Riccio M, et al. Short-circuit failure mechanism of SiC power MOSFETs. 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC’s (ISPSD), 2015, 345
[9]
Lin C B, Wu J P, Xu H Y, et al. Comparison and analysis of short circuit performance of 1200V SiC MOSFETs. 2020 17th China International Forum on Solid State Lighting & 2020 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), 2020, 81 doi: 10.1109/SSLChinaIFWS51786.2020.9308698
[10]
Zhou X T, Su H Y, Wang Y, et al. Investigations on the degradation of 1.2-kV 4H-SiC MOSFETs under repetitive short-circuit tests. IEEE Trans Electron Devices, 2016, 63(11), 4346 doi: 10.1109/TED.2016.2606882
[11]
Du H, Diaz Reigosa P, Ceccarelli L, et al. Impact of repetitive short-circuit tests on the normal operation of SiC MOSFETs considering case temperature influence. IEEE J Emerg Sel Top Power Electron, 2020, 8(1), 195 doi: 10.1109/JESTPE.2019.2942364
[12]
Awwad A E, Dieckerhoff S. Short-circuit evaluation and overcurrent protection for SiC power MOSFETs. 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe), 2015, 1 doi: 10.1109/EPE.2015.7311701
[13]
Deng X C, Zhu H, Li X, et al. Investigation and failure mode of asymmetric and double trench SiC mosfets under avalanche conditions. IEEE Trans Power Electron, 2020, 35(8), 8524 doi: 10.1109/TPEL.2020.2967497
[14]
Tsibizov A, Kovačević-Badstübner I, Kakarla B, et al. Accurate temperature estimation of SiC power mosfets under extreme operating conditions. IEEE Trans Power Electron, 2020, 35(2), 1855 doi: 10.1109/TPEL.2019.2917221
[15]
An J J, Namai M, Yano H, et al. Methodology for enhanced short-circuit capability of SiC MOSFETs. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2018, 391 doi: 10.1109/ISPSD.2018.8393685
[16]
Wang Z Q, Shi X J, Tolbert L M, et al. Temperature-dependent short-circuit capability of silicon carbide power MOSFETs. IEEE Trans Power Electron, 2016, 31(2), 1555 doi: 10.1109/TPEL.2015.2416358
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 640 Times PDF downloads: 76 Times Cited by: 0 Times

    History

    Received: 07 June 2024 Revised: 10 September 2024 Online: Accepted Manuscript: 15 October 2024Uncorrected proof: 12 November 2024Published: 15 December 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yi Huang, Qiurui Chen, Rongyao Ma, Kaifeng Tang, Qi Wang, Hongsheng Zhang, Ji Ding, Dandan Xu, Sheng Gao, Genquan Han. Short-circuit failure modes and mechanism investigation of 1200 V planar SiC MOSFETs[J]. Journal of Semiconductors, 2024, 45(12): 122501. doi: 10.1088/1674-4926/24060009 ****Y Huang, Q R Chen, R Y Ma, K F Tang, Q Wang, H S Zhang, J Ding, D D Xu, S Gao, and G Q Han, Short-circuit failure modes and mechanism investigation of 1200 V planar SiC MOSFETs[J]. J. Semicond., 2024, 45(12), 122501 doi: 10.1088/1674-4926/24060009
      Citation:
      Yi Huang, Qiurui Chen, Rongyao Ma, Kaifeng Tang, Qi Wang, Hongsheng Zhang, Ji Ding, Dandan Xu, Sheng Gao, Genquan Han. Short-circuit failure modes and mechanism investigation of 1200 V planar SiC MOSFETs[J]. Journal of Semiconductors, 2024, 45(12): 122501. doi: 10.1088/1674-4926/24060009 ****
      Y Huang, Q R Chen, R Y Ma, K F Tang, Q Wang, H S Zhang, J Ding, D D Xu, S Gao, and G Q Han, Short-circuit failure modes and mechanism investigation of 1200 V planar SiC MOSFETs[J]. J. Semicond., 2024, 45(12), 122501 doi: 10.1088/1674-4926/24060009

      Short-circuit failure modes and mechanism investigation of 1200 V planar SiC MOSFETs

      DOI: 10.1088/1674-4926/24060009
      More Information
      • Yi Huang got his Ph.D. degree in 2012 at Nanjing University. He is currently a professor at the School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China. His main research interests include power chip design, third-generation semiconductor GaN, SiC devices, semiconductor optoelectronic display materials, and semiconductor nanomaterials
      • Sheng Gao got the Ph.D. degree in 2022 at South China University of Technology. Then he joined Chongqing University of Posts and Telecommunications as a lecturer. He is currently serving as a postdoctoral fellow at China Resources Microelectronics (Chongqing) Co., LTD. His current research interests include the Ⅲ−Ⅴ nitride semiconductors and devices
      • Genquan Han got the BS degree at Tsinghua University, and Ph.D. degree at Institute of Semiconductors. He is currently a doctoral supervisor at Xidian University, a national-level talent, a national-level young talent, and a chief scientist of a national key research and development program project. His current research interests include advanced CMOS devices, the Ⅲ−Ⅴ nitride semiconductors and devices
      • Corresponding author: gaosheng@cqupt.edu.cn
      • Received Date: 2024-06-07
      • Revised Date: 2024-09-10
      • Available Online: 2024-10-15

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return