Citation: |
Junfei Wang, Junhui Hu, Chaowen Guan, Songke Fang, Zhichong Wang, Guobin Wang, Ke Xu, Tengbo Lv, Xiaoli Wang, Jianyang Shi, Ziwei Li, Junwen Zhang, Nan Chi, Chao Shen. Low-resistance Ohmic contact for GaN-based laser diodes[J]. Journal of Semiconductors, 2024, 45(12): 122502. doi: 10.1088/1674-4926/24060018
****
J F Wang, J H Hu, C W Guan, S K Fang, Z C Wang, G B Wang, K Xu, T B Lv, X L Wang, J Y Shi, Z W Li, J W Zhang, N Chi, and C Shen, Low-resistance Ohmic contact for GaN-based laser diodes[J]. J. Semicond., 2024, 45(12), 122502 doi: 10.1088/1674-4926/24060018
|
Low-resistance Ohmic contact for GaN-based laser diodes
DOI: 10.1088/1674-4926/24060018
More Information
-
Abstract
Low-resistance Ohmic contact is critical for the high efficiency GaN-based laser diodes. This study investigates the introduction of the In0.15Ga0.85N contact layer on the specific contact resistance. Experimental results reveal that adopting the In0.15Ga0.85N contact layer yields a minimized specific contact resistance of 2.57 × 10−5 Ω·cm2 which is two orders of magnitude lower than the GaN contact layer (7.61 × 10−3 Ω·cm2). A decrease in the specific contact resistance arises from the reduction of the barrier between the metal and p-type In0.15Ga0.85N. To develop an optimal metal electrode combination on the In0.15Ga0.85N contact layer, the Pd/Au and Ni/Au electrode stacks which are most commonly used in the formation of Ohmic contact with p-GaN are investigated. Metal stack of 10/30 nm Pd/Au is demonstrated effective in reducing the specific contact resistance to 10−5 Ω·cm2 level. The mechanism of the variation of the specific contact resistance under different annealing atmospheres is explained by auger electron spectroscopy.-
Keywords:
- p-GaN,
- Ohmic contact,
- specific contact resistance
-
References
[1] Adachi M. InGaN based green laser diodes on semipolar GaN substrate. Jpn J Appl Phys, 2014, 53, 100207 doi: 10.7567/JJAP.53.100207[2] Shen C, Ng T K, Leonard J T, et al. High-modulation-efficiency, integrated waveguide modulator–laser diode at 448 nm. ACS Photonics, 2016, 3, 262 doi: 10.1021/acsphotonics.5b00599[3] Shen C, Lee C M, Stegenburgs E, et al. Semipolar Ⅲ–nitride quantum well waveguide photodetector integrated with laser diode for on-chip photonic system. Appl Phys Express, 2017, 10, 042201 doi: 10.7567/APEX.10.042201[4] Shen C, Ng T K, Lee C M, et al. Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications. Opt Express, 2018, 26, A219 doi: 10.1364/OE.26.00A219[5] Chi N, Haas H, Kavehrad M, et al. Visible light communications: Demand factors, benefits and opportunities (Guest Editorial). IEEE Wirel Commun, 2015, 22, 5 doi: 10.1109/mwc.2015.7096278[6] Huang Y F, Chi Y C, Kao H Y, et al. Blue laser diode based free-space optical data transmission elevated to 18 Gbps over 16 m. Sci Rep, 2017, 7, 10478 doi: 10.1038/s41598-017-10289-y[7] Koide Y, Maeda T, Kawakami T, et al. Effects of annealing in an oxygen ambient on electrical properties of ohmic contacts to p-type GaN. J Electron Mater, 1999, 28, 341 doi: 10.1007/s11664-999-0037-7[8] Jang J S, Park S J, Seong T Y. Metallization scheme for highly low-resistance, transparent, and thermally stable Ohmic contacts to p-GaN. Appl Phys Lett, 2000, 76, 2898 doi: 10.1063/1.126510[9] Kwak J S, Cho J, Chae S, et al. Carrier transport mechanism of Pd/Pt/Au ohmic contacts to p-GaN in InGaN laser diode. Phys Status Solidi A, 2002, 194, 587 doi: 10.1002/1521-396X(200212)194:2<587::AID-PSSA587>3.0.CO;2-O[10] Chen J L, Brewer W D. Ohmic contacts on p-GaN. Adv Electron Mater, 2015, 1, 1500113 doi: 10.1002/aelm.201500113[11] Lu S, Deki M, Wang J, et al. Ohmic contact on low-doping-density p-type GaN with nitrogen-annealed Mg. Appl Phys Lett, 2021, 119, 242104 doi: 10.1063/5.0076764[12] Foresi J S, Moustakas T D. Metal contacts to gallium nitride. Appl Phys Lett, 1993, 62, 2859 doi: 10.1063/1.109207[13] Lin M E, Ma Z, Huang F Y, et al. Low resistance ohmic contacts on wide band-gap GaN. Appl Phys Lett, 1994, 64, 1003 doi: 10.1063/1.111961[14] Fan Z F, Mohammad S N, Kim W, et al. Very low resistance multilayer Ohmic contact to n-GaN. Appl Phys Lett, 1996, 68, 1672 doi: 10.1063/1.115901[15] Chen L C, Chen F R, Kai J J, et al. Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN. J Appl Phys, 1999, 86, 3826 doi: 10.1063/1.371294[16] Chen L C, Ho J K, Jong C S, et al. Oxidized Ni/Pt and Ni/Au ohmic contacts to p-type GaN. Appl Phys Lett, 2000, 76, 3703 doi: 10.1063/1.126755[17] Oh M S, Hwang D K, Lim J H, et al. Low resistance nonalloyed Ni∕Au Ohmic contacts to p-GaN irradiated by KrF excimer laser. Appl Phys Lett, 2006, 89, 042107 doi: 10.1063/1.2236656[18] Greco G, Prystawko P, Leszczyński M, et al. Electro-structural evolution and Schottky barrier height in annealed Au/Ni contacts onto p-GaN. J Appl Phys, 2011, 110, 123703 doi: 10.1063/1.3669407[19] King D J, Zhang L, Ramer J C, et al. Temperature behavior of Pt/Au ohmic contacts to p-GaN. MRS Online Proc Libr, 1997, 468, 421 doi: 10.1557/PROC-468-421[20] Trexler J T, Pearton S J, Holloway P H, et al. Comparison of Ni/Au, Pd/Au, and Cr/Au metallizations for ohmic contacts to p-GaN. MRS Online Proc Libr, 1996, 449, 1091 doi: 10.1557/PROC-449-1091[21] Kim T, Khim J, Chae S, et al. Low resistance contacts to P-type GaN. MRS Online Proc Libr, 1997, 468, 427 doi: 10.1557/PROC-468-427[22] Kim J K, Lee J L, Lee J W, et al. Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment. Appl Phys Lett, 1998, 73, 2953 doi: 10.1063/1.122641[23] Jang J S, Chang I S, Kim H K, et al. Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN. Appl Phys Lett, 1999, 74, 70 doi: 10.1063/1.123954[24] Zhou L, Lanford W, Ping A T, et al. Low resistance Ti/Pt/Au ohmic contacts to p-type GaN. Appl Phys Lett, 2000, 76, 3451 doi: 10.1063/1.126674[25] Durbha A, Pearton S J, Abernathy C R, et al. Microstructural stability of ohmic contacts to InxGa1–i>xN. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom, 1996, 14, 2582 doi: 10.1116/1.588771[26] Weimar A, Lell A, Brüderl G, et al. Investigation of low-resistance metal contacts on p-type GaN using the linear and circular transmission line method. Phys Status Solidi A, 2001, 183, 169 doi: 10.1002/1521-396X(200101)183:1<169::AID-PSSA169>3.0.CO;2-D[27] Wang W J, Xie W Z, Deng Z J, et al. Performance improvement of GaN based laser diode using Pd/Ni/Au metallization ohmic contact. Coatings, 2019, 9, 291 doi: 10.3390/coatings9050291[28] Moses P G, Miao M S, Yan Q M, et al. Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN. J Chem Phys, 2011, 134, 084703 doi: 10.1063/1.3548872[29] Lee J L, Kim J K, Lee J W, et al. Transparent Pt ohmic contact on p-type GaN with low resistivity using (NH4)2Sx treatment, electrochem. Solid-State Lett, 1999, 3, 53[30] Lee J L, Kim J K. Ohmic contact formation mechanism of Pd nonalloyed contacts on p-type GaN. J Electrochem Soc, 2000, 147, 2297 doi: 10.1149/1.1393524[31] Ho J K, Jong C S, Chiu C C, et al. Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films. J Appl Phys, 1999, 86, 4491 doi: 10.1063/1.371392[32] Oh M S, Kim S H, Hwang D K, et al. Formation of low resistance nonalloyed Ti∕Au ohmic contacts to n-type ZnO by KrF excimer laser irradiation. Electrochem Solid-State Lett, 2005, 8, G317 doi: 10.1149/1.2056447 -
Proportional views