J. Semicond. > 2024, Volume 45 > Issue 12 > 122304

ARTICLES

Thermoelectric infrared detectors: Design, fabrication, and performance assessment

Daryoosh Vashaee1, 2,

+ Author Affiliations

 Corresponding author: Daryoosh Vashaee, dvashae@ncsu.edu

DOI: 10.1088/1674-4926/24060011

PDF

Turn off MathJax

Abstract: This study presents a comprehensive optimization and comparative analysis of thermoelectric (TE) infrared (IR) detectors using Bi2Te3 and Si materials. Through theoretical modeling and numerical simulations, we explored the impact of TE material properties, device structure, and operating conditions on responsivity, detectivity, noise equivalent temperature difference (NETD), and noise equivalent power (NEP). Our study offers an optimally designed IR detector with responsivity and detectivity approaching 2 × 105 V/W and 6 × 109 cm∙Hz1/2/W, respectively. This enhancement is attributed to unique design features, including raised thermal collectors and long suspended thin thermoelectric wire sensing elements embedded in low thermal conductivity organic materials like parylene. Moreover, we demonstrate the compatibility of Bi2Te3-based detector fabrication processes with existing MEMS foundry processes, facilitating scalability and manufacturability. Importantly, for TE IR detectors, zT/κ emerges as a critical parameter contrary to conventional TE material selection based solely on zT (where zT is the thermoelectric figure of merit and κ is the thermal conductivity).

Key words: thermoelectricinfrared focal plane arraysmicromachiningBi2Te3



[1]
Vashaee D, Abdolvand R. Nano-wire thermoelectric infra-red detector, USA Patent, US20130248712A1, 2013
[2]
Bhatnagar P, Zaferani S H, Rafiefard N, et al. Advancing personalized healthcare and entertainment: Progress in energy harvesting materials and techniques of self-powered wearable devices. Prog Mater Sci, 2023, 139, 101184 doi: 10.1016/j.pmatsci.2023.101184
[3]
Bhatnagar P, Vashaee D. Development of MEMS process compatible (Bi, Sb)2(Se, Te)3-based thin films for scalable fabrication of planar micro-thermoelectric generators. Micromachines, 2022, 13(9), 1459 doi: 10.3390/mi13091459
[4]
Nozariasbmarz A, Krasinski J S, Vashaee D. N-type bismuth telluride nanocomposite materials optimization for thermoelectric generators in wearable applications. Materials (Basel), 2019, 12(9), 1529 doi: 10.3390/ma12091529
[5]
Tayebi L, Zamanipour Z, Vashaee D. Design optimization of micro-fabricated thermoelectric devices for solar power generation. Renew Energy, 2014, 69, 166 doi: 10.1016/j.renene.2014.02.055
[6]
Bhatnagar P, Vashaee D. Process considerations for selective doping of poly-Si thin films with spin-on dopants and nickel silicide formation for planar thermoelectric devices. Mater Sci Semicond Process, 2022, 150, 106941 doi: 10.1016/j.mssp.2022.106941
[7]
Nozariasbmarz A, Tahmasbi Rad A, Zamanipour Z, et al. Enhancement of thermoelectric power factor of silicon germanium films grown by electrophoresis deposition. Scr Mater, 2013, 69(7), 549 doi: 10.1016/j.scriptamat.2013.06.025
[8]
Kruse P W, Blue M D, Garfunkel J H, et al. Long wavelength photoeffects in mercury selenide, mercury telluride, and mercury telluride-cadmium telluride. Infrared Phys, 1962, 2(1), 53 doi: 10.1016/0020-0891(62)90043-X
[9]
Rogalski A, Piotrowski J. Intrinsic infrared detectors. Prog Quantum Electron, 1988, 12(2/3), 87 doi: 10.1016/0079-6727(88)90001-8
[10]
Levine B F. Quantum-well infrared photodetectors. J Appl Phys, 1993, 74(8), R1 doi: 10.1063/1.354252
[11]
Wood AR. Foss NA Micromachined bolometer arrays achieve low-cost imaging. Laser Focus World, 1993, 29(6), 101
[12]
Hanson C M. Chapter 4 hybrid pyroelectric-ferroelectric bolometer arrays. Semiconductors and Semimetals. Amsterdam: Elsevier, 1997, 123 doi: 10.1016/S0080-8784(08)62690-3
[13]
Kanno T, Saga M, Matsumoto S, et al. Uncooled infrared focal plane array having 128 × 128 thermopile detector elements. Infrared Technology XX, 1994, 450 doi: 10.1117/12.188660
[14]
Jerominek H, Pope T D, Renaud M, et al. 64 × 64, 128 × 128, 240 × 320 pixel uncooled IR bolometric detector arrays. Infrared Technology and Applications XXIII, 1997, 236 doi: 10.1117/12.280342
[15]
Kruse P W. Uncooled thermal imaging arrays, systems, and applications. SPIE, 2001, 51
[16]
Beratan H R, Hanson C M, Meissner E G. Low-cost uncooled ferroelectric detector. Infrared Detectors: State of the Art II, 1994, 2274, 147 doi: 10.1117/12.189240
[17]
Hamamatsu Photonics. Available: https://www.hamamatsu.com/eu/en.html [accessed May 28, 2024]
[18]
Ioffe AF. Poluprovodnikovye termoelementy. Semi-Cp CV–ACp, 1960, 2
[19]
Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B Condens Matter, 1993, 47(19), 12727 doi: 10.1103/PhysRevB.47.12727
[20]
Zamanipour Z, Shi X H, Dehkordi A M, et al. The effect of synthesis parameters on transport properties of nanostructured bulk thermoelectric p-type silicon germanium alloy. Phys Status Solidi A, 2012, 209(10), 2049 doi: 10.1002/pssa.201228102
[21]
Zamanipour Z, Shi X H, Mozafari M, et al. Synthesis, characterization, and thermoelectric properties of nanostructured bulk p-type MnSi1.73, MnSi1.75, and MnSi1.77. Ceram Int, 2013, 39(3), 2353 doi: 10.1016/j.ceramint.2012.08.086
[22]
Dresselhaus M S, Chen G, Ren Z F, et al. Nanocomposites to enhance zt in thermoelectrics. MRS Online Proc Libr, 2008, 1044(1), 204 doi: 10.1557/PROC-1044-U02-04
[23]
Satyala N, Tahmasbi Rad A, Zamanipour Z, et al. Reduction of thermal conductivity of bulk nanostructured bismuth telluride composites embedded with silicon nano-inclusions. J Appl Phys, 2014, 115, 044304 doi: 10.1063/1.4861727
[24]
Satyala N, Krasinski J S, Vashaee D. Simultaneous enhancement of mechanical and thermoelectric properties of polycrystalline magnesium silicide with conductive glass inclusion. Acta Mater, 2014, 74, 141 doi: 10.1016/j.actamat.2014.04.007
[25]
Nozariasbmarz A, Zamanipour Z, Norouzzadeh P, et al. Enhanced thermoelectric performance in a metal/semiconductor nanocomposite of iron silicide/silicon germanium. RSC Adv, 2016, 6(55), 49643 doi: 10.1039/C6RA01947A
[26]
Zamanipour Z, Vashaee D. Comparison of thermoelectric properties of p-type nanostructured bulk Si0.8Ge0.2 alloy with Si0.8Ge0.2 composites embedded with CrSi2 nano-inclusisons. J Appl Phys, 2012, 112(9), 093714 doi: 10.1063/1.4764919
[27]
Norouzzadeh P, Vashaee D. Classification of valleytronics in thermoelectricity. Sci Rep, 2016, 6, 22724 doi: 10.1038/srep22724
[28]
Hooshmand Zaferani S, Ghomashchi R, Vashaee D. Strategies for engineering phonon transport in Heusler thermoelectric compounds. Renew Sustain Energy Rev, 2019, 112, 158 doi: 10.1016/j.rser.2019.05.051
[29]
Norouzzadeh P, Myles C W, Vashaee D. Prediction of giant thermoelectric power factor in type-VIII clathrate Si46. Sci Rep, 2014, 4, 7028 doi: 10.1038/srep07028
[30]
Norouzzadeh P, Myles C W, Vashaee D. Prediction of a large number of electron pockets near the band edges in type-VIII clathrate Si46 and its physical properties from first principles. J Phys: Condens Matter, 2013, 25(47), 475502 doi: 10.1088/0953-8984/25/47/475502
[31]
Heremans J P, Jovovic V, Toberer E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888), 554 doi: 10.1126/science.1159725
[32]
Vashaee D, Zhang Y, Shakouri A, et al. Cross-plane Seebeck coefficient in superlattice structures in the miniband conduction regime. Phys Rev B, 2006, 74(19), 195315 doi: 10.1103/PhysRevB.74.195315
[33]
Vashaee D, Shakouri A. Nonequilibrium electrons and phonons in thin film thermionic coolers. Microscale Thermophys Eng, 2004, 8(2), 91 doi: 10.1080/10893950490445225
[34]
Vashaee D, Shakouri A. HgCdTe superlattices for solid-state cryogenic refrigeration. Appl Phys Lett, 2006, 88(13), 132110 doi: 10.1063/1.2191094
[35]
Polash M M H, Mohaddes F, Rasoulianboroujeni M, et al. Magnon-drag thermopower in antiferromagnets versus ferromagnets. J Mater Chem C, 2020, 8(12), 4049 doi: 10.1039/C9TC06330G
[36]
Polash M M H, Vashaee D. Magnon-bipolar carrier drag thermopower in antiferromagnetic/ferromagnetic semiconductors: Theoretical formulation and experimental evidence. Phys Rev B, 2020, 102(4), 045202 doi: 10.1103/PhysRevB.102.045202
[37]
Polash M M H, Rasoulianboroujeni M, Vashaee D. Magnon and spin transition contribution in heat capacity of ferromagnetic Cr-doped MnTe: Experimental evidence for a paramagnetic spin-caloritronic effect. Appl Phys Lett, 2020, 117(4), 03043903 doi: 10.1063/5.0011887
[38]
Polash M M H, Yalameha S, Zhou H H, et al. Topological quantum matter to topological phase conversion: Fundamentals, materials, physical systems for phase conversions, and device applications. Mater Sci Eng R Rep, 2021, 145, 100620 doi: 10.1016/j.mser.2021.100620
[39]
Polash M M H, Vashaee D. Anomalous thermoelectric transport properties of Fe-rich magnetic FeTe. Phys Status Solidi Rapid Res Lett, 2021, 15(10), 2100231 doi: 10.1002/pssr.202100231
[40]
Polash M M H, Moseley D, Zhang J J, et al. Understanding and design of spin-driven thermoelectrics. Cell Rep Phys Sci, 2021, 2(11), 100614 doi: 10.1016/j.xcrp.2021.100614
[41]
Polash M M H, Vashaee D. Spin fluctuations yield zT enhancement in ferromagnets. iScience, 2021, 24(11), 103356 doi: 10.1016/j.isci.2021.103356
[42]
Heydarinasab F, Jazandari M, Polash M M H, et al. Paramagnon heat capacity and anomalous thermopower in anisotropic magnetic systems: Understanding interlayer spin correlations in a magnetically disordered phase. Phys Rev B, 2024, 109(5), 054418 doi: 10.1103/PhysRevB.109.054418
[43]
Polash M M H, Smirnov A I, Vashaee D. Electron spin resonance in emerging spin-driven applications: Fundamentals and future perspectives. Appl Phys Rev, 2023, 10(4), 041301 doi: 10.1063/5.0072564
[44]
Norouzzadeh P, Ede K F, Vashaee D. The effect of nanostructuring on the spectral population of electrons and phonons. J Alloys Compd, 2018, 753, 234 doi: 10.1016/j.jallcom.2018.04.243
[45]
Norouzzadeh P, Zamanipour Z, Krasinski J S, et al. The effect of nanostructuring on thermoelectric transport properties of p-type higher manganese silicide MnSi1.73. J Appl Phys, 2012, 112(12), 124308 doi: 10.1063/1.4769884
[46]
Satyala N, Vashaee D. Detrimental influence of nanostructuring on the thermoelectric properties of magnesium silicide. J Appl Phys, 2012, 112(9), 093716 doi: 10.1063/1.4764872
[47]
Nozariasbmarz A, Roy P, Zamanipour Z, et al. Comparison of thermoelectric properties of nanostructured Mg2Si, FeSi2, SiGe, and nanocomposites of SiGe–Mg2Si, SiGe–FeSi2. APL Mater, 2016, 4(10), 104814 doi: 10.1063/1.4966138
[48]
Mohebali M, Liu Y, Tayebi L, et al. Thermoelectric figure of merit of bulk FeSi2–Si0.8Ge0.2 nanocomposite and a comparison with β-FeSi2. Renew Energy, 2015, 74, 940 doi: 10.1016/j.renene.2014.08.059
[49]
Satyala N, Vashaee D. Modeling of thermoelectric properties of MagnesiumSilicide (Mg2Si). J Electron Mater, 2012, 41(6), 1785 doi: 10.1007/s11664-012-2024-7
[50]
Keppens V, Mandrus D, Sales B C, et al. Localized vibrational modes in metallic solids. Nature, 1998, 395(6705), 876 doi: 10.1038/27625
[51]
Hermann R P, Jin R Y, Schweika W, et al. Einstein oscillators in thallium filled antimony skutterudites. Phys Rev Lett, 2003, 90(13), 135505 doi: 10.1103/PhysRevLett.90.135505
[52]
Koza M M, Johnson M R, Viennois R, et al. Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nat Mater, 2008, 7(10), 805 doi: 10.1038/nmat2260
[53]
Norouzzadeh P, Myles C W, Vashaee D. Phonon dynamics in type-VIII silicon clathrates: Beyond the rattler concept. Phys Rev B, 2017, 95(19), 195206 doi: 10.1103/PhysRevB.95.195206
[54]
Norouzzadeh P, Myles C W, Vashaee D. Electronic, elastic, vibrational, and thermodynamic properties of type-VIII clathrates Ba8Ga16Sn30 and Ba8Al16Sn30 by first principles. J Appl Phys, 2013, 114(16), 163509 doi: 10.1063/1.4826213
[55]
Norouzzadeh P, Norouzzadeh P, Myles C W, Vashaee D. Structural, electronic, phonon and thermodynamic properties of hypothetical type-VIII clathrates Ba8Si46 and Ba8Al16Si30 investigated by first principles. J Alloys Compd, 2014, 587, 474 doi: 10.1016/j.jallcom.2013.10.190
[56]
Kruse P W. Uncooled IR focal plane arrays. Opto-Electronics Review, 1999, 7(4), 253
[57]
Murphy D F, Ray M, Wyles R, et al. High-sensitivity (25-μm pitch) microbolometer FPAs and application development. Infrared Technology and Applications XXVII, 2001, 4369, 222 doi: 10.1117/12.445290
[58]
Anderson J S, Bradley D, Chen C W, et al. Low-cost microsensors program. Infrared Technology and Applications XXVII, 2001, 4369, 559 doi: 10.1117/12.445315
[59]
McEwen K R, Manning P A. European uncooled thermal imaging sensors. Infrared Technology and Applications XXV, 1999, 368, 322
[60]
Murphy D, Ray M, Kennedy A, et al. Expanded applications for high performance VOx microbolometer FPAs. Infrared Technology and Applications XXXI, 2005, 5783, 448 doi: 10.1117/12.609462
[61]
Oliver A D, Baer W G, Wise K D. A bulk-micromachined 1024-element uncooled infrared imager. Proceedings of the International Solid-State Sensors and Actuators Conference-TRANSDUCERS '95, 2002, 636 doi: 10.1109/SENSOR.1995.721912
[62]
Hirota M, Nakajima Y, Saito M, et al. 120×90 element thermopile array fabricated with CMOS technologyInfrared Technology and Applications XXVIII. SPIE, 2003, 4820, 239 doi: 10.1117/12.457719
[63]
Schaufelbuchl A, Munich U, Menolfi C, et al. 256-pixel CMOS-integrated thermoelectric infrared sensor array. Technical Digest. MEMS 2001.14th IEEE International Conference on Micro Electro Mechanical Systems, 2001, 200 doi: 10.1109/MEMSYS.2001.906513
[64]
Foote M C, Gaalema S D. Progress toward high-performance thermopile imaging arrays. Infrared Technology and Applications XXVII, 2001, 4369, 350 doi: 10.1117/12.445337
[65]
Foote M C, Krueger T R, Schofield J T, et al. Space science applications of thermopile detector arrays. Quantum Sensing: Evolution and Revolution from Past to Future, 2003, 4999, 443 doi: 10.1117/12.482474
[66]
Hirota M, Nakajima Y, Saito M, et al. 120 × 90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber. Sens Actuat A Phys, 2007, 135(1), 146 doi: 10.1016/j.sna.2006.06.058
[67]
Shih C Y, Chen Y, Tai Y C. Parylene-strengthened thermal isolation technology for microfluidic system-on-chip applications. Sens Actuat A Phys, 2006, 126(1), 270 doi: 10.1016/j.sna.2005.09.024
[68]
Vashaee D, LaBounty C J, Fang X, et al. P-type InGaAsP coolers for integrated optic devices. Proc SPIE, 2001, 4284, 139 doi: 10.1117/12.426867
[69]
Osterman D P, Patt R, Hunt R, et al. Uncooled micromachined thermopile arrays and readout circuits. Infrared Technology and Applications XXV, 1999, 3698, 376 doi: 10.1117/12.354539
[70]
Hochbaum A I, Chen R K, Delgado R D, et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451(7175), 163 doi: 10.1038/nature06381
Fig. 1.  (Color online) This figure displays a comparison of the detectivity values for different types of commercially available IR detectors[17]. Photodetectors typically require cooling and exhibit high detectivity within a narrow bandwidth, with peak values decreasing as wavelength increases. Conversely, thermal detectors do not require cooling, feature a wider bandwidth and show less sensitivity to changes in wavelength. While the theoretical maximum detectivity for thermal detectors stands at 2 × 1010 cm∙Hz1/2/W, current thermoelectric detectors achieve detectivities around 1.5 × 108 cm∙Hz1/2/W. The new concept explored in this paper is projected to potentially achieve a detectivity of 6 × 109 cm∙Hz1/2/W.

Fig. 2.  (Color online) (a) A typical thermal IR sensor illustrating the standard configuration and components. (b) The enhanced thermal IR sensor design studied in this work, featuring a raised thermal collector to enhance the fill factor and long thermoelectric wire sensing elements to improve responsivity and detectivity.

Fig. 3.  (Color online) Schematic view of the proposed IR detection cell.

Fig. 4.  (Color online) (a) Responsivity and (b) detectivity of the Bi2Te3-based IR detector versus materials thermal conductivity. The plots depict the trade-off between responsivity and detectivity by adjusting the geometry of the TE wires, with the peak detectivity occurring at κ = 0.4 W/mK. Below this threshold, reducing the thermal conductivity increases responsivity but decreases detectivity due to higher electrical resistance and Johnson noise.

Fig. 5.  Schematics of the TE IR detector. (a) device layout, (b) TE length calculation.

Fig. 6.  (Color online) Comparative analysis of (a) responsivity and (b) detectivity of a thermoelectric (TE) infrared (IR) detector employing various TE materials at standard room temperature.

Fig. 7.  (Color online) (a) Time constant and (b) noise level of the Bi2Te3-based IR detector versus materials thermal conductivity. A thermal conductivity of 1 W/mK yields a video frame rate of 50 Hz, meeting the standard viewing requirement of 30 Hz for human comfort.

Fig. 8.  (Color online) (a) NETD and (b) NEP of the Bi2Te3-based IR detector plotted against the thermal conductivity of materials. A thermal conductivity of 1 W/mK yields a video frame rate of 50 Hz, typically sufficient for comfortable human viewing.

Fig. 9.  (Color online) (a) Detectivity and (b) NETD of the Bi2Te3-based IR detector plotted against the material's thermal conductivity. The graph illustrates two scenarios, one with zT = 1 and the other with zT = 2.5, highlighting the influence of the thermoelectric figure of merit on detector performance.

Fig. 10.  (Color online) (a) Responsivity and (b) detectivity of the Bi2Te3-based IR detector plotted against TE wire width. Two scenarios are depicted: one with a single TE wire and the other with three TE wires embedded in parallel inside the parylene beam. The device featuring a single TE junction exhibits higher responsivity and detectivity.

Fig. 11.  (Color online) Comparison of (a) time constant and (b) noise level for the Bi2Te3-based IR detector versus TE wire width, considering both single and triple junction configurations. The single junction device exhibits a larger time constant (considered undesirable) but a smaller noise level (considered favorable). However, a TE wire width of 1 µm achieves a target time constant of 20 ms (50 fps) while maintaining a noise level of 10 nV/Hz1/2.

Fig. 12.  (Color online) Comparison of (a) NETD and (b) NEP for the Bi2Te3-based IR detector concerning TE wire width for two configurations of single and triple junction TE detectors. Decreasing wire diameter leads to reduced NETD and NEP for both configurations. Notably, both NETD and NEP are lower for the single junction detector compared to the three-junction detector. Achieving a target NETD of 20 mK requires a wire diameter of less than approximately 2 µm for the single junction detector and around 0.5 µm for the triple junction detector.

Fig. 13.  (Color online) Comparison of (a) responsivity and (b) detectivity versus TE wire width for Bi2Te3 and Si-based thermoelectrics in IR detectors. The plot illustrates how decreasing wire diameter enhances responsivity and detectivity for both materials. However, Bi2Te3 exhibits significantly higher responsivity and detectivity compared to Si, with approximately one and a half orders of magnitude difference observed across varying wire widths. For instance, at a wire width of 100 nm, Bi2Te3-based detectors demonstrate a responsivity of 3 × 105 V/W, while Si-based detectors exhibit 104 V/W. Similarly, the detectivity for Bi2Te3 stands at 9 × 109 cm·Hz1/2/W, whereas for Si, it is 5 × 108 cm·Hz1/2/W.

Fig. 14.  (Color online) Comparison of the (a) time constant and (b) noise level versus TE wire width for Si and Bi2Te3-based thermoelectrics. Bi2Te3-based detectors exhibit notably higher time constants than Si-based ones, while maintaining comparable noise levels.

Fig. 15.  (Color online) Comparison of the (a) NETD and (b) NEP versus TE wire width for Si and Bi2Te3-based thermoelectrics. Smaller wire diameters result in reduced NETD and NEP for both materials, with Bi2Te3-based detectors exhibiting significantly lower values compared to Si-based ones.

Fig. 16.  (Color online) (a) Responsivity and (b) detectivity of TE IR detectors versus wire width at different ambient temperatures and bandwidth settings. While responsivity remains relatively constant, detectivity shows dependency on temperature variations. The impact of bandwidth restriction (2‒10 µm) on detectivity is moderate and negligible on responsivity.

Fig. 17.  (Color online) The variations in (a) time constant and (b) noise level with wire width across different temperatures and bandwidth settings for TE IR detectors. The curves for unlimited bandwidth and 2‒10 µm bandwidth at 300 K (blue and red) overlap due to the negligible difference between them.

Fig. 18.  (Color online) (a) NETD and (b) NEP versus wire width for TE IR detectors across various temperatures and bandwidth settings. Both NETD and NEP exhibit strong dependency on temperature but minimal dependence on bandwidth. The curves for unlimited bandwidth and 2‒10 µm bandwidth at 300 K (blue and red) overlap due to negligible differences between the two.

Fig. 19.  (Color online) Plot illustrating detectivity (a) and NEP (b) as functions of NETD for TE IR detectors, with two bandwidth settings: 1‒14 µm and 8‒12 µm. The figure demonstrates the inverse relationship between NETD, detectivity, and NEP, with the effect more pronounced at smaller NETD values.

Table 1.   Comparison of FPA Technologies: This table compares photon and thermal IR FPAs across various parameters, including wavelength sensitivity, cryogenic cooling requirements, weight, operating temperature, response time, noise equivalent temperature difference (NETD), and cost. It also provides a detailed comparison of different types of thermal IR FPAs, highlighting their concepts, common materials, sensing parameters, pixel pitch, NETD, need for temperature stabilizers, bias voltage, mechanical components, and sensitivity to vibration/acoustic noise.

Photon versus thermal IR FPAs
Technology Concept Wavelength sensitive Cryogenic cooling required Weight Operating Temperature Response time NETD Cost
Photon detectors Bandgap transition Yes Yes Heavy 100 K µs 10 mK $10 K−$100 K
Thermal detectors Temperature dependent properties Depends on absorber No Light 300 K ms 50 mK $1000
Comparison of the thermal IR FPAs
Technology Concept Common material Sensing parameter Pixel pitch NETD Temperature stabilizer Bias voltage Mechanical component Vibration/
acoustic sensitive
Ferroelectric detector: Pyroelectric detectors Temperature dependent spontaneous polarization well below Tc BST, PST, PZT, PVDF, lithium tantalate Temperature 40 µm <80 mK Yes No Yes Yes
(microphony effect)
Ferroelectric detector: Dielectric bolometers Temperature dependent spontaneous polarization and dielectric constant near Tc BST, PST, PZT, PVDF, lithium tantalate Temperature 40 µm <80 mK Yes Yes No Yes
Resistance bolometers Temperature dependent resistivity VOx, a-Si Temperature 20 µm 20 mK Yes Yes No No
Diode bolometers Temperature dependent Ⅳ Si Temperature 25 µm 40 mK Yes Yes No No
Thermoelectric detector Seebeck effect Poly-Si, Bi2Te3 Temperature gradient 90 µm 50 mK No No No No
This Study Seebeck effect High z/k Bi2Te3 Temperature gradient 20 µm 20 mK No No No No
DownLoad: CSV

Table 2.   Device parameters and material properties.

Parameters Value Parameters Value
# of TE pairs in each beam N = 1, 3 Si NW Seebeck coefficient 1370 μV/K
Total area of the sensor, AIR 30 × 30 μm2 Si NW thermal conductivity 1.6 W/mK
TE wires separation, u 1 μm Si NW electrical conductivity 280 S/cm
Membrane thickness, tm 0.5 μm Si bulk Seebeck coefficient 663 μV/K
SiO2 specific heat 2200 kg/m3 Si bulk thermal conductivity 100 W/mK
Au-black specific heat 1260 j/(kg·K) Si bulk electrical conductivity 106 S/cm
Au-black mass density 965 kg/m3 SiGe bulk Seebeck coefficient 270 μV/K
SiN thermal conductivity 30 W/mK SiGe bulk thermal conductivity 1.5 W/mK
SiO2 cladding thickness, tSiO2 50 nm Si bulk electrical conductivity 154 S/cm
SiN layer thickness 0.5 μm PbTe Seebeck coefficient 100 μV/K
IR absorber thickness, tIR 0.5 μm PbTe thermal conductivity 2.7 W/mK
IR absorber supporter area 7 × 7 μm2 PbTe electrical conductivity 6000 S/cm
Si specific heat 712 j/(kg·K) Bi2Te3 Seebeck coefficient 210 μV/K
SiO2 mass density 740 j/(kg·K) Bi2Te3 thermal conductivity 1.4 W/mK
Si mass density 2330 kg/m3 Bi2Te3 electrical conductivity 1000 S/cm
Parylene thermal conductivity 0.08 W/mK
DownLoad: CSV

Table 3.   Detectivity of TE IR detectors with conventional and optimized designs, showing improvements from material and design enhancements.

MaterialDetectivity—conventional design (cm·Hz1/2/W)Detectivity—optimized design
(cm·Hz1/2/W)
Poly-Si (κ = 5 W/mK, zTn, p = 0.014)1.4 × 1074.4 × 108
Bi2Te3 (κ = 1.5 W/mK, zTp = 1.0, zTn = 0.9)6.3 × 1074.5 × 109
Optimized Bi2Te3 (κ = 0.4 W/mK, zTp = 1.6, zTn = 1.2)4 × 1086 × 109
DownLoad: CSV
[1]
Vashaee D, Abdolvand R. Nano-wire thermoelectric infra-red detector, USA Patent, US20130248712A1, 2013
[2]
Bhatnagar P, Zaferani S H, Rafiefard N, et al. Advancing personalized healthcare and entertainment: Progress in energy harvesting materials and techniques of self-powered wearable devices. Prog Mater Sci, 2023, 139, 101184 doi: 10.1016/j.pmatsci.2023.101184
[3]
Bhatnagar P, Vashaee D. Development of MEMS process compatible (Bi, Sb)2(Se, Te)3-based thin films for scalable fabrication of planar micro-thermoelectric generators. Micromachines, 2022, 13(9), 1459 doi: 10.3390/mi13091459
[4]
Nozariasbmarz A, Krasinski J S, Vashaee D. N-type bismuth telluride nanocomposite materials optimization for thermoelectric generators in wearable applications. Materials (Basel), 2019, 12(9), 1529 doi: 10.3390/ma12091529
[5]
Tayebi L, Zamanipour Z, Vashaee D. Design optimization of micro-fabricated thermoelectric devices for solar power generation. Renew Energy, 2014, 69, 166 doi: 10.1016/j.renene.2014.02.055
[6]
Bhatnagar P, Vashaee D. Process considerations for selective doping of poly-Si thin films with spin-on dopants and nickel silicide formation for planar thermoelectric devices. Mater Sci Semicond Process, 2022, 150, 106941 doi: 10.1016/j.mssp.2022.106941
[7]
Nozariasbmarz A, Tahmasbi Rad A, Zamanipour Z, et al. Enhancement of thermoelectric power factor of silicon germanium films grown by electrophoresis deposition. Scr Mater, 2013, 69(7), 549 doi: 10.1016/j.scriptamat.2013.06.025
[8]
Kruse P W, Blue M D, Garfunkel J H, et al. Long wavelength photoeffects in mercury selenide, mercury telluride, and mercury telluride-cadmium telluride. Infrared Phys, 1962, 2(1), 53 doi: 10.1016/0020-0891(62)90043-X
[9]
Rogalski A, Piotrowski J. Intrinsic infrared detectors. Prog Quantum Electron, 1988, 12(2/3), 87 doi: 10.1016/0079-6727(88)90001-8
[10]
Levine B F. Quantum-well infrared photodetectors. J Appl Phys, 1993, 74(8), R1 doi: 10.1063/1.354252
[11]
Wood AR. Foss NA Micromachined bolometer arrays achieve low-cost imaging. Laser Focus World, 1993, 29(6), 101
[12]
Hanson C M. Chapter 4 hybrid pyroelectric-ferroelectric bolometer arrays. Semiconductors and Semimetals. Amsterdam: Elsevier, 1997, 123 doi: 10.1016/S0080-8784(08)62690-3
[13]
Kanno T, Saga M, Matsumoto S, et al. Uncooled infrared focal plane array having 128 × 128 thermopile detector elements. Infrared Technology XX, 1994, 450 doi: 10.1117/12.188660
[14]
Jerominek H, Pope T D, Renaud M, et al. 64 × 64, 128 × 128, 240 × 320 pixel uncooled IR bolometric detector arrays. Infrared Technology and Applications XXIII, 1997, 236 doi: 10.1117/12.280342
[15]
Kruse P W. Uncooled thermal imaging arrays, systems, and applications. SPIE, 2001, 51
[16]
Beratan H R, Hanson C M, Meissner E G. Low-cost uncooled ferroelectric detector. Infrared Detectors: State of the Art II, 1994, 2274, 147 doi: 10.1117/12.189240
[17]
Hamamatsu Photonics. Available: https://www.hamamatsu.com/eu/en.html [accessed May 28, 2024]
[18]
Ioffe AF. Poluprovodnikovye termoelementy. Semi-Cp CV–ACp, 1960, 2
[19]
Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B Condens Matter, 1993, 47(19), 12727 doi: 10.1103/PhysRevB.47.12727
[20]
Zamanipour Z, Shi X H, Dehkordi A M, et al. The effect of synthesis parameters on transport properties of nanostructured bulk thermoelectric p-type silicon germanium alloy. Phys Status Solidi A, 2012, 209(10), 2049 doi: 10.1002/pssa.201228102
[21]
Zamanipour Z, Shi X H, Mozafari M, et al. Synthesis, characterization, and thermoelectric properties of nanostructured bulk p-type MnSi1.73, MnSi1.75, and MnSi1.77. Ceram Int, 2013, 39(3), 2353 doi: 10.1016/j.ceramint.2012.08.086
[22]
Dresselhaus M S, Chen G, Ren Z F, et al. Nanocomposites to enhance zt in thermoelectrics. MRS Online Proc Libr, 2008, 1044(1), 204 doi: 10.1557/PROC-1044-U02-04
[23]
Satyala N, Tahmasbi Rad A, Zamanipour Z, et al. Reduction of thermal conductivity of bulk nanostructured bismuth telluride composites embedded with silicon nano-inclusions. J Appl Phys, 2014, 115, 044304 doi: 10.1063/1.4861727
[24]
Satyala N, Krasinski J S, Vashaee D. Simultaneous enhancement of mechanical and thermoelectric properties of polycrystalline magnesium silicide with conductive glass inclusion. Acta Mater, 2014, 74, 141 doi: 10.1016/j.actamat.2014.04.007
[25]
Nozariasbmarz A, Zamanipour Z, Norouzzadeh P, et al. Enhanced thermoelectric performance in a metal/semiconductor nanocomposite of iron silicide/silicon germanium. RSC Adv, 2016, 6(55), 49643 doi: 10.1039/C6RA01947A
[26]
Zamanipour Z, Vashaee D. Comparison of thermoelectric properties of p-type nanostructured bulk Si0.8Ge0.2 alloy with Si0.8Ge0.2 composites embedded with CrSi2 nano-inclusisons. J Appl Phys, 2012, 112(9), 093714 doi: 10.1063/1.4764919
[27]
Norouzzadeh P, Vashaee D. Classification of valleytronics in thermoelectricity. Sci Rep, 2016, 6, 22724 doi: 10.1038/srep22724
[28]
Hooshmand Zaferani S, Ghomashchi R, Vashaee D. Strategies for engineering phonon transport in Heusler thermoelectric compounds. Renew Sustain Energy Rev, 2019, 112, 158 doi: 10.1016/j.rser.2019.05.051
[29]
Norouzzadeh P, Myles C W, Vashaee D. Prediction of giant thermoelectric power factor in type-VIII clathrate Si46. Sci Rep, 2014, 4, 7028 doi: 10.1038/srep07028
[30]
Norouzzadeh P, Myles C W, Vashaee D. Prediction of a large number of electron pockets near the band edges in type-VIII clathrate Si46 and its physical properties from first principles. J Phys: Condens Matter, 2013, 25(47), 475502 doi: 10.1088/0953-8984/25/47/475502
[31]
Heremans J P, Jovovic V, Toberer E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888), 554 doi: 10.1126/science.1159725
[32]
Vashaee D, Zhang Y, Shakouri A, et al. Cross-plane Seebeck coefficient in superlattice structures in the miniband conduction regime. Phys Rev B, 2006, 74(19), 195315 doi: 10.1103/PhysRevB.74.195315
[33]
Vashaee D, Shakouri A. Nonequilibrium electrons and phonons in thin film thermionic coolers. Microscale Thermophys Eng, 2004, 8(2), 91 doi: 10.1080/10893950490445225
[34]
Vashaee D, Shakouri A. HgCdTe superlattices for solid-state cryogenic refrigeration. Appl Phys Lett, 2006, 88(13), 132110 doi: 10.1063/1.2191094
[35]
Polash M M H, Mohaddes F, Rasoulianboroujeni M, et al. Magnon-drag thermopower in antiferromagnets versus ferromagnets. J Mater Chem C, 2020, 8(12), 4049 doi: 10.1039/C9TC06330G
[36]
Polash M M H, Vashaee D. Magnon-bipolar carrier drag thermopower in antiferromagnetic/ferromagnetic semiconductors: Theoretical formulation and experimental evidence. Phys Rev B, 2020, 102(4), 045202 doi: 10.1103/PhysRevB.102.045202
[37]
Polash M M H, Rasoulianboroujeni M, Vashaee D. Magnon and spin transition contribution in heat capacity of ferromagnetic Cr-doped MnTe: Experimental evidence for a paramagnetic spin-caloritronic effect. Appl Phys Lett, 2020, 117(4), 03043903 doi: 10.1063/5.0011887
[38]
Polash M M H, Yalameha S, Zhou H H, et al. Topological quantum matter to topological phase conversion: Fundamentals, materials, physical systems for phase conversions, and device applications. Mater Sci Eng R Rep, 2021, 145, 100620 doi: 10.1016/j.mser.2021.100620
[39]
Polash M M H, Vashaee D. Anomalous thermoelectric transport properties of Fe-rich magnetic FeTe. Phys Status Solidi Rapid Res Lett, 2021, 15(10), 2100231 doi: 10.1002/pssr.202100231
[40]
Polash M M H, Moseley D, Zhang J J, et al. Understanding and design of spin-driven thermoelectrics. Cell Rep Phys Sci, 2021, 2(11), 100614 doi: 10.1016/j.xcrp.2021.100614
[41]
Polash M M H, Vashaee D. Spin fluctuations yield zT enhancement in ferromagnets. iScience, 2021, 24(11), 103356 doi: 10.1016/j.isci.2021.103356
[42]
Heydarinasab F, Jazandari M, Polash M M H, et al. Paramagnon heat capacity and anomalous thermopower in anisotropic magnetic systems: Understanding interlayer spin correlations in a magnetically disordered phase. Phys Rev B, 2024, 109(5), 054418 doi: 10.1103/PhysRevB.109.054418
[43]
Polash M M H, Smirnov A I, Vashaee D. Electron spin resonance in emerging spin-driven applications: Fundamentals and future perspectives. Appl Phys Rev, 2023, 10(4), 041301 doi: 10.1063/5.0072564
[44]
Norouzzadeh P, Ede K F, Vashaee D. The effect of nanostructuring on the spectral population of electrons and phonons. J Alloys Compd, 2018, 753, 234 doi: 10.1016/j.jallcom.2018.04.243
[45]
Norouzzadeh P, Zamanipour Z, Krasinski J S, et al. The effect of nanostructuring on thermoelectric transport properties of p-type higher manganese silicide MnSi1.73. J Appl Phys, 2012, 112(12), 124308 doi: 10.1063/1.4769884
[46]
Satyala N, Vashaee D. Detrimental influence of nanostructuring on the thermoelectric properties of magnesium silicide. J Appl Phys, 2012, 112(9), 093716 doi: 10.1063/1.4764872
[47]
Nozariasbmarz A, Roy P, Zamanipour Z, et al. Comparison of thermoelectric properties of nanostructured Mg2Si, FeSi2, SiGe, and nanocomposites of SiGe–Mg2Si, SiGe–FeSi2. APL Mater, 2016, 4(10), 104814 doi: 10.1063/1.4966138
[48]
Mohebali M, Liu Y, Tayebi L, et al. Thermoelectric figure of merit of bulk FeSi2–Si0.8Ge0.2 nanocomposite and a comparison with β-FeSi2. Renew Energy, 2015, 74, 940 doi: 10.1016/j.renene.2014.08.059
[49]
Satyala N, Vashaee D. Modeling of thermoelectric properties of MagnesiumSilicide (Mg2Si). J Electron Mater, 2012, 41(6), 1785 doi: 10.1007/s11664-012-2024-7
[50]
Keppens V, Mandrus D, Sales B C, et al. Localized vibrational modes in metallic solids. Nature, 1998, 395(6705), 876 doi: 10.1038/27625
[51]
Hermann R P, Jin R Y, Schweika W, et al. Einstein oscillators in thallium filled antimony skutterudites. Phys Rev Lett, 2003, 90(13), 135505 doi: 10.1103/PhysRevLett.90.135505
[52]
Koza M M, Johnson M R, Viennois R, et al. Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. Nat Mater, 2008, 7(10), 805 doi: 10.1038/nmat2260
[53]
Norouzzadeh P, Myles C W, Vashaee D. Phonon dynamics in type-VIII silicon clathrates: Beyond the rattler concept. Phys Rev B, 2017, 95(19), 195206 doi: 10.1103/PhysRevB.95.195206
[54]
Norouzzadeh P, Myles C W, Vashaee D. Electronic, elastic, vibrational, and thermodynamic properties of type-VIII clathrates Ba8Ga16Sn30 and Ba8Al16Sn30 by first principles. J Appl Phys, 2013, 114(16), 163509 doi: 10.1063/1.4826213
[55]
Norouzzadeh P, Norouzzadeh P, Myles C W, Vashaee D. Structural, electronic, phonon and thermodynamic properties of hypothetical type-VIII clathrates Ba8Si46 and Ba8Al16Si30 investigated by first principles. J Alloys Compd, 2014, 587, 474 doi: 10.1016/j.jallcom.2013.10.190
[56]
Kruse P W. Uncooled IR focal plane arrays. Opto-Electronics Review, 1999, 7(4), 253
[57]
Murphy D F, Ray M, Wyles R, et al. High-sensitivity (25-μm pitch) microbolometer FPAs and application development. Infrared Technology and Applications XXVII, 2001, 4369, 222 doi: 10.1117/12.445290
[58]
Anderson J S, Bradley D, Chen C W, et al. Low-cost microsensors program. Infrared Technology and Applications XXVII, 2001, 4369, 559 doi: 10.1117/12.445315
[59]
McEwen K R, Manning P A. European uncooled thermal imaging sensors. Infrared Technology and Applications XXV, 1999, 368, 322
[60]
Murphy D, Ray M, Kennedy A, et al. Expanded applications for high performance VOx microbolometer FPAs. Infrared Technology and Applications XXXI, 2005, 5783, 448 doi: 10.1117/12.609462
[61]
Oliver A D, Baer W G, Wise K D. A bulk-micromachined 1024-element uncooled infrared imager. Proceedings of the International Solid-State Sensors and Actuators Conference-TRANSDUCERS '95, 2002, 636 doi: 10.1109/SENSOR.1995.721912
[62]
Hirota M, Nakajima Y, Saito M, et al. 120×90 element thermopile array fabricated with CMOS technologyInfrared Technology and Applications XXVIII. SPIE, 2003, 4820, 239 doi: 10.1117/12.457719
[63]
Schaufelbuchl A, Munich U, Menolfi C, et al. 256-pixel CMOS-integrated thermoelectric infrared sensor array. Technical Digest. MEMS 2001.14th IEEE International Conference on Micro Electro Mechanical Systems, 2001, 200 doi: 10.1109/MEMSYS.2001.906513
[64]
Foote M C, Gaalema S D. Progress toward high-performance thermopile imaging arrays. Infrared Technology and Applications XXVII, 2001, 4369, 350 doi: 10.1117/12.445337
[65]
Foote M C, Krueger T R, Schofield J T, et al. Space science applications of thermopile detector arrays. Quantum Sensing: Evolution and Revolution from Past to Future, 2003, 4999, 443 doi: 10.1117/12.482474
[66]
Hirota M, Nakajima Y, Saito M, et al. 120 × 90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber. Sens Actuat A Phys, 2007, 135(1), 146 doi: 10.1016/j.sna.2006.06.058
[67]
Shih C Y, Chen Y, Tai Y C. Parylene-strengthened thermal isolation technology for microfluidic system-on-chip applications. Sens Actuat A Phys, 2006, 126(1), 270 doi: 10.1016/j.sna.2005.09.024
[68]
Vashaee D, LaBounty C J, Fang X, et al. P-type InGaAsP coolers for integrated optic devices. Proc SPIE, 2001, 4284, 139 doi: 10.1117/12.426867
[69]
Osterman D P, Patt R, Hunt R, et al. Uncooled micromachined thermopile arrays and readout circuits. Infrared Technology and Applications XXV, 1999, 3698, 376 doi: 10.1117/12.354539
[70]
Hochbaum A I, Chen R K, Delgado R D, et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008, 451(7175), 163 doi: 10.1038/nature06381
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 500 Times PDF downloads: 52 Times Cited by: 0 Times

    History

    Received: 07 July 2024 Revised: 12 August 2024 Online: Accepted Manuscript: 25 November 2024Uncorrected proof: 27 November 2024Published: 15 December 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Daryoosh Vashaee. Thermoelectric infrared detectors: Design, fabrication, and performance assessment[J]. Journal of Semiconductors, 2024, 45(12): 122304. doi: 10.1088/1674-4926/24060011 ****D Vashaee, Thermoelectric infrared detectors: Design, fabrication, and performance assessment[J]. J. Semicond., 2024, 45(12), 122304 doi: 10.1088/1674-4926/24060011
      Citation:
      Daryoosh Vashaee. Thermoelectric infrared detectors: Design, fabrication, and performance assessment[J]. Journal of Semiconductors, 2024, 45(12): 122304. doi: 10.1088/1674-4926/24060011 ****
      D Vashaee, Thermoelectric infrared detectors: Design, fabrication, and performance assessment[J]. J. Semicond., 2024, 45(12), 122304 doi: 10.1088/1674-4926/24060011

      Thermoelectric infrared detectors: Design, fabrication, and performance assessment

      DOI: 10.1088/1674-4926/24060011
      More Information
      • Daryoosh Vashaee is a full Professor of Electrical and Computer Engineering and Materials Science and Engineering at North Carolina State University. He is the director of the Nanoscience and Quantum Engineering Research Laboratory. His research interests include quantum and nanostructured materials for energy conversion and information technologies. In the past, he has contributed to the development of several critical thermoelectric structures, including heterostructure thermionic devices, bulk nanocomposite, and paramagnetic thermoelectric materials. He received his Ph.D. at the University of California at Santa Cruz and worked at MIT as a postdoctoral scholar
      • Corresponding author: dvashae@ncsu.edu
      • Received Date: 2024-07-07
      • Revised Date: 2024-08-12
      • Available Online: 2024-11-25

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return