Citation: |
Yulong Wang, Xiuwen Xu, Shujuan Liu, Qiang Zhao. A magic organic molecule assembled capping layer enables air-processed α-FAPbI3 perovskite solar cell with state-of-the-art performances[J]. Journal of Semiconductors, 2024, 45(10): 100402. doi: 10.1088/1674-4926/24070017
****
Y L Wang, X W Xu, S J Liu, and Q Zhao, A magic organic molecule assembled capping layer enables air-processed α-FAPbI3 perovskite solar cell with state-of-the-art performances[J]. J. Semicond., 2024, 45(10), 100402 doi: 10.1088/1674-4926/24070017
|
A magic organic molecule assembled capping layer enables air-processed α-FAPbI3 perovskite solar cell with state-of-the-art performances
DOI: 10.1088/1674-4926/24070017
CSTR: 32376.14.1674-4926.24070017
More Information-
References
[1] Ma C Q, Park N G. A realistic methodology for 30% efficient perovskite solar cells. Chem, 2020, 6(6), 1254 doi: 10.1016/j.chempr.2020.04.013[2] Ma C Q, Eickemeyer F T, Lee S H, et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science, 2023, 379(6628), 173 doi: 10.1126/science.adf3349[3] Zhu P D, Wang D, Zhang Y, et al. Aqueous synthesis of perovskite precursors for highly efficient perovskite solar cells. Science, 2024, 383(6682), 524 doi: 10.1126/science.adj7081[4] Gao C, Wang H, Wang P, et al. Defect passivation with potassium trifluoroborate for efficient spray-coated perovskite solar cells in air. J Semicond, 2022, 43(9), 092201 doi: 10.1088/1674-4926/43/9/092201[5] Wang Y X, Zhang X, Shi Z J, et al. Stabilizing α-phase FAPbI3 solar cells. J Semicond, 2022, 43(4), 040202 doi: 10.1088/1674-4926/43/4/040202[6] Liu X P, Luo D Y, Lu Z H, et al. Stabilization of photoactive phases for perovskite photovoltaics. Nat Rev Chem, 2023, 7(7), 462 doi: 10.1038/s41570-023-00492-z[7] Bu T L, Li J, Li H Y, et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science, 2021, 372(6548), 1327 doi: 10.1126/science.abh1035[8] Bu T L, Ono L K, Li J, et al. Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat Energy, 2022, 7(6), 528 doi: 10.1038/s41560-022-01039-0[9] Lv M X, Li N, Jin G, et al. Phase-stable FAPbI3-based single crystals with 600-μm electron diffusion length. Matter, 2023, 6(12), 4388 doi: 10.1016/j.matt.2023.10.021[10] Raval P, Kennard R M, Vasileiadou E S, et al. Understanding instability in formamidinium lead halide perovskites: Kinetics of transformative reactions at grain and subgrain boundaries. ACS Energy Lett, 2022, 7(4), 1534 doi: 10.1021/acsenergylett.2c00140[11] Shi P J, Ding Y, Ding B, et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature, 2023, 620(7973), 323 doi: 10.1038/s41586-023-06208-z[12] Yan L Y, Huang H, Cui P, et al. Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt. Nat Energy, 2023, 8(10), 1158 doi: 10.1038/s41560-023-01358-w[13] Xu X W, Ma C Q, Xie Y M, et al. Air-processed mixed-cation Cs0.15FA0.85PbI3 planar perovskite solar cells derived from a PbI2–CsI–FAI intermediate complex. J Mater Chem A, 2018, 6(17), 7731 doi: 10.1039/C8TA01049H[14] Zou Y, Yu W J, Guo H Q, et al. A crystal capping layer for formation of black-phase FAPbI3 perovskite in humid air. Science, 2024, 385(6705), 161 doi: 10.1126/science.adn9646[15] Wang X L, Ying Z Q, Zheng J M, et al. Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion. Nat Commun, 2023, 14(1), 2166 doi: 10.1038/s41467-023-37877-z[16] Chen P, Xiao Y, Li L, et al. Efficient inverted perovskite solar cells via improved sequential deposition. Adv Mater, 2023, 35, 2206345 doi: 10.1002/adma.202206345[17] Xu X W, Wang Y Q, Meng H X, et al. Perovskite-perovskite junctions for optoelectronics: Fundamentals, processing, and applications. Matter, 2022, 5(7), 2086 doi: 10.1016/j.matt.2022.05.030 -
Proportional views