J. Semicond. > 2024, Volume 45 > Issue 11 > 110201

RESEARCH HIGHLIGHTS

Nickel oxide for perovskite tandem solar cells

Ting Nie1, 3, Yuanhang Cheng2, 4, and Zhimin Fang1,

+ Author Affiliations

 Corresponding author: Yuanhang Cheng, yhcheng@njust.edu.cn; Zhimin Fang, fangzm@yzu.edu.cn

DOI: 10.1088/1674-4926/24070022

PDF

Turn off MathJax



[1]
Mariotti S, Köhnen E, Scheler F, et al. Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science, 2023, 381(6653), 63 doi: 10.1126/science.adf5872
[2]
Lin R X, Wang Y R, Lu Q W, et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature, 2023, 620(7976), 994 doi: 10.1038/s41586-023-06278-z
[3]
Liu X X, Zhang J J, Tang L T, et al. Over 28% efficiency perovskite/Cu(InGa)Se2 tandem solar cells: Highly efficient sub-cells and their bandgap matching. Energy Environ Sci, 2023, 16(11), 5029 doi: 10.1039/D3EE00869J
[4]
Fang Z M, Zeng Q, Zuo C T, et al. Perovskite-based tandem solar cells. Sci Bull, 2021, 66(6), 621 doi: 10.1016/j.scib.2020.11.006
[5]
Zhang Z H, Li Z C, Meng L Y, et al. Perovskite-based tandem solar cells: Get the most out of the sun. Adv Funct Mater, 2020, 30(38), 2001904 doi: 10.1002/adfm.202001904
[6]
Leijtens T, Bush K A, Prasanna R, et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy, 2018, 3(10), 828 doi: 10.1038/s41560-018-0190-4
[7]
Wang Y R, Zhang M, Xiao K, et al. Recent progress in developing efficient monolithic all-perovskite tandem solar cells. J Semicond, 2020, 41(5), 051201 doi: 10.1088/1674-4926/41/5/051201
[8]
Zhang L X, Pan X Y, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43(3), 030203 doi: 10.1088/1674-4926/43/3/030203
[9]
Chen W, Zhu Y D, Xiu J W, et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat Energy, 2022, 7(3), 229 doi: 10.1038/s41560-021-00966-8
[10]
Green M A, Dunlop E D, Yoshita M, et al. Solar cell efficiency tables (Version 64). Progress Photovoltaics, 2024, 32(7), 425 doi: 10.1002/pip.3831
[11]
Ma F, Zhao Y, Li J H, et al. Nickel oxide for inverted structure perovskite solar cells. J Energy Chem, 2021, 52, 393 doi: 10.1016/j.jechem.2020.04.027
[12]
Sajid S, Elseman A M, Huang H, et al. Breakthroughs in NiO x-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy, 2018, 51, 408 doi: 10.1016/j.nanoen.2018.06.082
[13]
Zhang H, Zhao C X, Yao J X, et al. Dopant-free nio nanocrystals: A low-cost and stable hole transport material for commercializing perovskite optoelectronics. Angew Chem Int Ed Engl, 2023, 62(24), e202219307 doi: 10.1002/anie.202219307
[14]
Bush K A, Palmstrom A F, Yu Z J, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy, 2017, 2(4), 17009 doi: 10.1038/nenergy.2017.9
[15]
Li R J, Chen B B, Ren N Y, et al. CsPbCl3-cluster-widened bandgap and inhibited phase segregation in a wide-bandgap perovskite and its application to NiO x-based perovskite/silicon tandem solar cells. Adv Mater, 2022, 34(27), 2201451 doi: 10.1002/adma.202201451
[16]
Boyd C C, Shallcross R C, Moot T, et al. Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule, 2020, 4(8), 1759 doi: 10.1016/j.joule.2020.06.004
[17]
Hang P J, Kan C X, Li B, et al. Highly efficient and stable wide-bandgap perovskite solar cells via strain management. Adv Funct Mater, 2023, 33(11), 2214381 doi: 10.1002/adfm.202214381
[18]
De Bastiani M, Armaroli G, Jalmood R, et al. Mechanical reliability of fullerene/tin oxide interfaces in monolithic perovskite/silicon tandem cells. ACS Energy Lett, 2022, 7(2), 827 doi: 10.1021/acsenergylett.1c02148
[19]
Lang F, Jošt M, Frohna K, et al. Proton radiation hardness of perovskite tandem photovoltaics. Joule, 2020, 4(5), 1054 doi: 10.1016/j.joule.2020.03.006
[20]
Hou Y, Aydin E, De Bastiani M, et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367(6482), 1135 doi: 10.1126/science.aaz3691
[21]
De Bastiani M, Mirabelli A J, Hou Y, et al. Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering. Nat Energy, 2021, 6(2), 167 doi: 10.1038/s41560-020-00756-8
[22]
Zhumagali S, Isikgor F H, Maity P, et al. Linked nickel oxide/perovskite interface passivation for high-performance textured monolithic tandem solar cells. Adv Energy Mater, 2021, 11(40), 2101662 doi: 10.1002/aenm.202101662
[23]
Wu Y L, Zheng P T, Peng J, et al. 27.6% perovskite/c-Si tandem solar cells using industrial fabricated topcon device. Adv Energy Mater, 2022, 12(27), 2200821 doi: 10.1002/aenm.202200821
[24]
Zhu Z J, Yuan S J, Mao K T, et al. Low-temperature atomic layer deposition of hole transport layers for enhanced performance and scalability in textured perovskite/silicon tandem solar cells. Adv Energy Mater, 2024, 2402365 doi: 10.1002/aenm.202402365
[25]
Li M L, Liu M, Qi F, et al. Self-assembled monolayers for interfacial engineering in solution-processed thin-film electronic devices: Design, fabrication, and applications. Chem Rev, 2024, 124(5), 2138 doi: 10.1021/acs.chemrev.3c00396
[26]
Chu L, Ding L M. Self-assembled monolayers in perovskite solar cells. J Semicond, 2021, 42(9), 090202 doi: 10.1088/1674-4926/42/9/090202
[27]
Fang Z M, Nie T, Yan N, et al. Charge transport materials for monolithic perovskite-based tandem solar cells: A review. Sci China Mater, 2023, 66(6), 2107 doi: 10.1007/s40843-022-2437-9
[28]
Li S, Zheng Z, Ju J Q, et al. A generic strategy to stabilize wide bandgap perovskites for efficient tandem solar cells. Adv Mater, 2024, 36(9), 2307701 doi: 10.1002/adma.202307701
[29]
Jin Y B, Feng H P, Fang Z, et al. Efficient and stable monolithic perovskite/silicon tandem solar cells enabled by contact-resistance-tunable indium tin oxide interlayer. Adv Mater, 2024, 36(35), 2404010 doi: 10.1002/adma.202404010
[30]
Mao L, Yang T, Zhang H, et al. Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. Adv Mater, 2022, 34(40), 2206193 doi: 10.1002/adma.202206193
[31]
Luo X, Luo H W, Li H J, et al. Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv Mater, 2023, 35(9), 2207883 doi: 10.1002/adma.202207883
[32]
Rajagopal A, Yang Z, Jo S B, et al. Highly efficient perovskite-perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv Mater, 2017, 29(34), 1702140 doi: 10.1002/adma.201702140
[33]
Xiao K, Lin R X, Han Q L, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat Energy, 2020, 5(11), 870 doi: 10.1038/s41560-020-00705-5
[34]
Wen J, Zhao Y C, Liu Z, et al. Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Adv Mater, 2022, 34(26), 2110356 doi: 10.1002/adma.202110356
[35]
Lin R X, Xu J, Wei M Y, et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature, 2022, 603(7899), 73 doi: 10.1038/s41586-021-04372-8
[36]
Xiao K, Lin Y H, Zhang M, et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science, 2022, 376(6594), 762 doi: 10.1126/science.abn7696
[37]
Li L D, Wang Y R, Wang X Y, et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat Energy, 2022, 7(8), 708 doi: 10.1038/s41560-022-01045-2
[38]
Li T T, Xu J, Lin R X, et al. Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat Energy, 2023, 8(6), 610 doi: 10.1038/s41560-023-01250-7
[39]
Wang Y R, Lin R X, Wang X Y, et al. Oxidation-resistant all-perovskite tandem solar cells in substrate configuration. Nat Commun, 2023, 14(1), 1819 doi: 10.1038/s41467-023-37492-y
[40]
Chen H, Maxwell A, Li C W, et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature, 2023, 613(7945), 676 doi: 10.1038/s41586-022-05541-z
[41]
Li C W, Chen L, Jiang F Y, et al. Diamine chelates for increased stability in mixed Sn-Pb and all-perovskite tandem solar cells. Nat Energy, 2024 doi: 10.1038/s41560-024-01613-8
[42]
Jošt M, Bertram T, Koushik D, et al. 21.6%-efficient monolithic perovskite/Cu(In, Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces. ACS Energy Lett, 2019, 4(2), 583 doi: 10.1021/acsenergylett.9b00135
[43]
Ruiz-Preciado M A, Gota F, Fassl P, et al. Monolithic two-terminal perovskite/cis tandem solar cells with efficiency approaching 25%. ACS Energy Lett, 2022, 7(7), 2273 doi: 10.1021/acsenergylett.2c00707
[44]
Liu Q S, Jiang Y F, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65(4), 272 doi: 10.1016/j.scib.2020.01.001
[45]
Jin K, Xiao Z, Ding L M. 18.69% PCE from organic solar cells. J Semicond, 2021, 42(6), 060502 doi: 10.1088/1674-4926/42/6/060502
[46]
Wu H T, Chen T Y, Li Y K, et al. Phase-segregation free quasi-2D perovskite/organic tandem solar cells with low VOC loss and efficiency beyond 21%. J Mater Chem A, 2023, 11(13), 6877 doi: 10.1039/D3TA00052D
[47]
Li Y X, Yan Y C, Fu Y A, et al. Highly durable inverted inorganic perovskite/organic tandem solar cells enabled by multifunctional additives. Angew Chem Int Ed Engl, 2024, e202412515 doi: 10.1002/anie.202412515
[48]
Guo X, Jia Z R, Liu S C, et al. Stabilizing efficient wide-bandgap perovskite in perovskite-organic tandem solar cells. Joule, 2024 doi: 10.1016/j.joule.2024.06.009
Fig. 1.  (Color online) (a) Schematic of the perovskite/silicon TSC. Reproduced with permission[14]. Copyright 2017, Nature Publishing Group. (b) Schematic of the influence of the addition of excess CsCl in the perovskite precursor, preventing the formation of PbI2−xBrx at the interface. Reproduced with permission[15]. Copyright 2022, Wiley-VCH. (c) Cross-sectional SEM images of a textured c-Si cell with an average pyramid size of 2 mm and (d) covered by solution-processed perovskite crystal. Reproduced with permission[20]. Copyright 2020, Science Publishing Group. (e) Chemical structure and electrostatic potential surface of the N719 molecule; 3D charge density differences for NiO(001)/N719 and N719/PbI2-rich MAPbI3(001) interface through −SCN and −COO binding modes. (f) Schematic of the perovskite/silicon TSCs fabricated on a textured silicon heterojunction (SHJ) solar cell. The cross-sectional SEM image shows the textured SHJ surface, the ITO/NiOx/N719 recombination junction, and the perovskite sub-cell. Reproduced with permission[22]. Copyright 2021, Wiley-VCH. (g) Schematic diagram of bonding interaction between NiOx and 2PACz. (h) Theoretical model of 2PACz adsorption on ITO (left) and NiOx (right) surfaces in the presence of surface hydroxyl groups based on DFT calculations. (i) P 2p region of the XPS spectra of ITO, ITO/2PACz and ITO/2PACz/Washed samples. Reproduced with permission[30]. Copyright 2022, Wiley-VCH.

Fig. 2.  (Color online) (a) Schematic structure of an all-perovskite TSC. (b) Cross-sectional SEM image of the all-perovskite TSC. (c) J−V curves of the control and FSA-based TSCs (aperture area, 1.05 cm2). Reproduced with permission[33]. Copyright 2020, Nature Publishing Group. (d) Schematic of an all-perovskite tandem device fully fabricated using scalable techniques. (e) J−V curves of the champion tandem solar cell (aperture area of 1.05 cm2). (f) J−V curves of the champion all-perovskite tandem module (aperture area of 20.25 cm2, four sub-cells in series). Reproduced with permission[36]. Copyright 2022, Science Publishing Group. (g) Device structure and molecular structures of bridging molecules. Reproduced with permission[37]. Copyright 2022, Nature Publishing Group. (h) Cross-sectional image of a perovskite/CIGS TSC. The inset displays the perovskite top cell in more detail. Reproduced with permission[43]. Copyright 2019, American Chemical Society. (i) Schematic diagrams of BPA passivation on NiOx. Reproduced with permission[9]. Copyright 2022, Nature Publishing Group.

Table 1.   Direct comparison of commonly used HTLs in PSCs.

MaterialsBandgap (eV)Hole mobility (cm2 ∙V−1∙ s−1)Chemical stability
PEDOT:PSS~2.01.57 × 10−4●●○○○
PTAA~3.31.07 × 10–3●●●○○
NiOx~3.62.53●●●●●
Spiro-OMeTAD~2.71.79 × 10−3●○○○○
MeO-2PACz~3.2<10–5●○○○○
DownLoad: CSV

Table 2.   Summary of highly efficient perovskite-based TSCs employing a NiOx HTL.

Top cell Bottom cell VOC (V) JSC (mA/cm2) FF (%) PCE (%) Ref
Cs0.17FA0.83Pb(Br0.17I0.83)3 Si 1.65 18.1 79.0 23.6 [14]
Cs0.22FA0.78Pb(I0.85Br0.15)3 Si 1.86 19.23 76.22 27.26 [15]
/ Si 1.90 19.48 76.42 28.35 [17]
Cs0.05MA0.15FA0.8PbI2.25Br0.75 Si 1.70 19.8 77 26.0 [20]
Cs0.15MA0.15FA0.70Pb(I0.80Br0.20)3 Si 1.78 19.2 76.8 26.2 [22]
Cs0.22FA0.78Pb(Cl0.03Br0.15I0.85)3 Si 1.794 19.68 78.27 27.63 [23]
Cs0.25FA0.75Pb(I0.85Br0.15)3 Si 1.907 19.92 79.92 30.36 [24]
FA0.8Cs0.2Pb(I1−xBrx)3 Si 2.02 15.8 81.8 26.1 [28]
/ Si 1.97 20.08 77.71 30.82 [29]
/ Si 1.794 20.11 79.95 28.84 [30]
/ Si 1.85 19.8 78.9 28.9 [31]
FA0.8Cs0.2Pb(I0.6Br0.4)3 PVK 2.013 16.0 79.8 25.6 [33]
DMA0.1Cs0.4Br0.25Cl0.05 PVK 2.046 16.0 80.1 26.2 [34]
/ PVK 2.048 16.54 77.9 26.4 [35]
CsPbI3−xBrx PVK 2.00 16.1 79.6 25.6 [38]
FA0.8Cs0.2Pb(I0.6Br0.4)3 PVK 2.049 15.6 78.7 25.3 [39]
Cs0.2FA0.8Pb(I0.6Br0.4)3 PVK 2.19 15.05 83.1 27.4 [40]
FA0.8Cs0.2Pb(I0.63Br0.37)3 PVK 2.18 15.57 84.8 28.83 [41]
Cs0.05(MA0.23FA0.77)Pb1.1(I0.77Br0.23)3 GIGS 1.58 18.0 76.0 21.6 [42]
/ GIGS 1.57 21.1 75.2 24.9 [43]
Cs0.25FA0.75Pb(I0.6Br0.4)3 OSC 2.063 14.83 77.2 23.60 [9]
BA1.8PEA0.2MA2Pb4I13 OSC 2.06 13.3 78.3 21.3 [46]
CsPb(IxBr1−x)3 OSC 2.11 14.38 76.58 23.24 [47]
Cs0.25FA0.75Pb(Br0.5I0.5)3 OSC 2.144 14.65 80.02 25.13 [48]
DownLoad: CSV
[1]
Mariotti S, Köhnen E, Scheler F, et al. Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science, 2023, 381(6653), 63 doi: 10.1126/science.adf5872
[2]
Lin R X, Wang Y R, Lu Q W, et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature, 2023, 620(7976), 994 doi: 10.1038/s41586-023-06278-z
[3]
Liu X X, Zhang J J, Tang L T, et al. Over 28% efficiency perovskite/Cu(InGa)Se2 tandem solar cells: Highly efficient sub-cells and their bandgap matching. Energy Environ Sci, 2023, 16(11), 5029 doi: 10.1039/D3EE00869J
[4]
Fang Z M, Zeng Q, Zuo C T, et al. Perovskite-based tandem solar cells. Sci Bull, 2021, 66(6), 621 doi: 10.1016/j.scib.2020.11.006
[5]
Zhang Z H, Li Z C, Meng L Y, et al. Perovskite-based tandem solar cells: Get the most out of the sun. Adv Funct Mater, 2020, 30(38), 2001904 doi: 10.1002/adfm.202001904
[6]
Leijtens T, Bush K A, Prasanna R, et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy, 2018, 3(10), 828 doi: 10.1038/s41560-018-0190-4
[7]
Wang Y R, Zhang M, Xiao K, et al. Recent progress in developing efficient monolithic all-perovskite tandem solar cells. J Semicond, 2020, 41(5), 051201 doi: 10.1088/1674-4926/41/5/051201
[8]
Zhang L X, Pan X Y, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43(3), 030203 doi: 10.1088/1674-4926/43/3/030203
[9]
Chen W, Zhu Y D, Xiu J W, et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat Energy, 2022, 7(3), 229 doi: 10.1038/s41560-021-00966-8
[10]
Green M A, Dunlop E D, Yoshita M, et al. Solar cell efficiency tables (Version 64). Progress Photovoltaics, 2024, 32(7), 425 doi: 10.1002/pip.3831
[11]
Ma F, Zhao Y, Li J H, et al. Nickel oxide for inverted structure perovskite solar cells. J Energy Chem, 2021, 52, 393 doi: 10.1016/j.jechem.2020.04.027
[12]
Sajid S, Elseman A M, Huang H, et al. Breakthroughs in NiO x-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy, 2018, 51, 408 doi: 10.1016/j.nanoen.2018.06.082
[13]
Zhang H, Zhao C X, Yao J X, et al. Dopant-free nio nanocrystals: A low-cost and stable hole transport material for commercializing perovskite optoelectronics. Angew Chem Int Ed Engl, 2023, 62(24), e202219307 doi: 10.1002/anie.202219307
[14]
Bush K A, Palmstrom A F, Yu Z J, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy, 2017, 2(4), 17009 doi: 10.1038/nenergy.2017.9
[15]
Li R J, Chen B B, Ren N Y, et al. CsPbCl3-cluster-widened bandgap and inhibited phase segregation in a wide-bandgap perovskite and its application to NiO x-based perovskite/silicon tandem solar cells. Adv Mater, 2022, 34(27), 2201451 doi: 10.1002/adma.202201451
[16]
Boyd C C, Shallcross R C, Moot T, et al. Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule, 2020, 4(8), 1759 doi: 10.1016/j.joule.2020.06.004
[17]
Hang P J, Kan C X, Li B, et al. Highly efficient and stable wide-bandgap perovskite solar cells via strain management. Adv Funct Mater, 2023, 33(11), 2214381 doi: 10.1002/adfm.202214381
[18]
De Bastiani M, Armaroli G, Jalmood R, et al. Mechanical reliability of fullerene/tin oxide interfaces in monolithic perovskite/silicon tandem cells. ACS Energy Lett, 2022, 7(2), 827 doi: 10.1021/acsenergylett.1c02148
[19]
Lang F, Jošt M, Frohna K, et al. Proton radiation hardness of perovskite tandem photovoltaics. Joule, 2020, 4(5), 1054 doi: 10.1016/j.joule.2020.03.006
[20]
Hou Y, Aydin E, De Bastiani M, et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367(6482), 1135 doi: 10.1126/science.aaz3691
[21]
De Bastiani M, Mirabelli A J, Hou Y, et al. Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering. Nat Energy, 2021, 6(2), 167 doi: 10.1038/s41560-020-00756-8
[22]
Zhumagali S, Isikgor F H, Maity P, et al. Linked nickel oxide/perovskite interface passivation for high-performance textured monolithic tandem solar cells. Adv Energy Mater, 2021, 11(40), 2101662 doi: 10.1002/aenm.202101662
[23]
Wu Y L, Zheng P T, Peng J, et al. 27.6% perovskite/c-Si tandem solar cells using industrial fabricated topcon device. Adv Energy Mater, 2022, 12(27), 2200821 doi: 10.1002/aenm.202200821
[24]
Zhu Z J, Yuan S J, Mao K T, et al. Low-temperature atomic layer deposition of hole transport layers for enhanced performance and scalability in textured perovskite/silicon tandem solar cells. Adv Energy Mater, 2024, 2402365 doi: 10.1002/aenm.202402365
[25]
Li M L, Liu M, Qi F, et al. Self-assembled monolayers for interfacial engineering in solution-processed thin-film electronic devices: Design, fabrication, and applications. Chem Rev, 2024, 124(5), 2138 doi: 10.1021/acs.chemrev.3c00396
[26]
Chu L, Ding L M. Self-assembled monolayers in perovskite solar cells. J Semicond, 2021, 42(9), 090202 doi: 10.1088/1674-4926/42/9/090202
[27]
Fang Z M, Nie T, Yan N, et al. Charge transport materials for monolithic perovskite-based tandem solar cells: A review. Sci China Mater, 2023, 66(6), 2107 doi: 10.1007/s40843-022-2437-9
[28]
Li S, Zheng Z, Ju J Q, et al. A generic strategy to stabilize wide bandgap perovskites for efficient tandem solar cells. Adv Mater, 2024, 36(9), 2307701 doi: 10.1002/adma.202307701
[29]
Jin Y B, Feng H P, Fang Z, et al. Efficient and stable monolithic perovskite/silicon tandem solar cells enabled by contact-resistance-tunable indium tin oxide interlayer. Adv Mater, 2024, 36(35), 2404010 doi: 10.1002/adma.202404010
[30]
Mao L, Yang T, Zhang H, et al. Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. Adv Mater, 2022, 34(40), 2206193 doi: 10.1002/adma.202206193
[31]
Luo X, Luo H W, Li H J, et al. Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv Mater, 2023, 35(9), 2207883 doi: 10.1002/adma.202207883
[32]
Rajagopal A, Yang Z, Jo S B, et al. Highly efficient perovskite-perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv Mater, 2017, 29(34), 1702140 doi: 10.1002/adma.201702140
[33]
Xiao K, Lin R X, Han Q L, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat Energy, 2020, 5(11), 870 doi: 10.1038/s41560-020-00705-5
[34]
Wen J, Zhao Y C, Liu Z, et al. Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Adv Mater, 2022, 34(26), 2110356 doi: 10.1002/adma.202110356
[35]
Lin R X, Xu J, Wei M Y, et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature, 2022, 603(7899), 73 doi: 10.1038/s41586-021-04372-8
[36]
Xiao K, Lin Y H, Zhang M, et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science, 2022, 376(6594), 762 doi: 10.1126/science.abn7696
[37]
Li L D, Wang Y R, Wang X Y, et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat Energy, 2022, 7(8), 708 doi: 10.1038/s41560-022-01045-2
[38]
Li T T, Xu J, Lin R X, et al. Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat Energy, 2023, 8(6), 610 doi: 10.1038/s41560-023-01250-7
[39]
Wang Y R, Lin R X, Wang X Y, et al. Oxidation-resistant all-perovskite tandem solar cells in substrate configuration. Nat Commun, 2023, 14(1), 1819 doi: 10.1038/s41467-023-37492-y
[40]
Chen H, Maxwell A, Li C W, et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature, 2023, 613(7945), 676 doi: 10.1038/s41586-022-05541-z
[41]
Li C W, Chen L, Jiang F Y, et al. Diamine chelates for increased stability in mixed Sn-Pb and all-perovskite tandem solar cells. Nat Energy, 2024 doi: 10.1038/s41560-024-01613-8
[42]
Jošt M, Bertram T, Koushik D, et al. 21.6%-efficient monolithic perovskite/Cu(In, Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces. ACS Energy Lett, 2019, 4(2), 583 doi: 10.1021/acsenergylett.9b00135
[43]
Ruiz-Preciado M A, Gota F, Fassl P, et al. Monolithic two-terminal perovskite/cis tandem solar cells with efficiency approaching 25%. ACS Energy Lett, 2022, 7(7), 2273 doi: 10.1021/acsenergylett.2c00707
[44]
Liu Q S, Jiang Y F, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65(4), 272 doi: 10.1016/j.scib.2020.01.001
[45]
Jin K, Xiao Z, Ding L M. 18.69% PCE from organic solar cells. J Semicond, 2021, 42(6), 060502 doi: 10.1088/1674-4926/42/6/060502
[46]
Wu H T, Chen T Y, Li Y K, et al. Phase-segregation free quasi-2D perovskite/organic tandem solar cells with low VOC loss and efficiency beyond 21%. J Mater Chem A, 2023, 11(13), 6877 doi: 10.1039/D3TA00052D
[47]
Li Y X, Yan Y C, Fu Y A, et al. Highly durable inverted inorganic perovskite/organic tandem solar cells enabled by multifunctional additives. Angew Chem Int Ed Engl, 2024, e202412515 doi: 10.1002/anie.202412515
[48]
Guo X, Jia Z R, Liu S C, et al. Stabilizing efficient wide-bandgap perovskite in perovskite-organic tandem solar cells. Joule, 2024 doi: 10.1016/j.joule.2024.06.009
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 645 Times PDF downloads: 80 Times Cited by: 0 Times

    History

    Received: 23 July 2024 Revised: 21 August 2024 Online: Accepted Manuscript: 02 September 2024Uncorrected proof: 03 September 2024Published: 15 November 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ting Nie, Yuanhang Cheng, Zhimin Fang. Nickel oxide for perovskite tandem solar cells[J]. Journal of Semiconductors, 2024, 45(11): 110201. doi: 10.1088/1674-4926/24070022 ****T Nie, Y H Cheng, and Z M Fang, Nickel oxide for perovskite tandem solar cells[J]. J. Semicond., 2024, 45(11), 110201 doi: 10.1088/1674-4926/24070022
      Citation:
      Ting Nie, Yuanhang Cheng, Zhimin Fang. Nickel oxide for perovskite tandem solar cells[J]. Journal of Semiconductors, 2024, 45(11): 110201. doi: 10.1088/1674-4926/24070022 ****
      T Nie, Y H Cheng, and Z M Fang, Nickel oxide for perovskite tandem solar cells[J]. J. Semicond., 2024, 45(11), 110201 doi: 10.1088/1674-4926/24070022

      Nickel oxide for perovskite tandem solar cells

      DOI: 10.1088/1674-4926/24070022
      More Information
      • Ting Nie is currently a PhD student at the School of Materials Science and Engineering, Shaanxi Normal University. Her research focuses on wide-bandgap perovskite solar cells
      • Yuanhang Cheng is a professor at the School of New Energy, Nanjing University of Science and Technology (NJUST). Before joining NJUST, he was a research associate at the City University of Hong Kong (CityU) from 2021 to 2022. He also worked as a research fellow at the Solar Energy Research Institute of Singapore (SERIS), National University of Singapore (NUS) from 2018 to 2021. His research interests include highly efficient perovskite solar cells, new photovoltaic materials with various organic−inorganic composites, and solar-powered photoelectrochemical applications
      • Zhimin Fang received his PhD from University of Science and Technology of China in 2020. Since September 2017, he has been working at National Center for Nanoscience and Technology as a visiting student. Later, he joined Shaanxi Normal University as a postdoc. In 2024, he was selected into Yangzhou University’s Young Hundred Program. His research focuses on perovskite solar cells
      • Corresponding author: yhcheng@njust.edu.cnfangzm@yzu.edu.cn
      • Received Date: 2024-07-23
      • Revised Date: 2024-08-21
      • Available Online: 2024-09-02

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return