Citation: |
Ting Nie, Yuanhang Cheng, Zhimin Fang. Nickel oxide for perovskite tandem solar cells[J]. Journal of Semiconductors, 2024, 45(11): 110201. doi: 10.1088/1674-4926/24070022
****
T Nie, Y H Cheng, and Z M Fang, Nickel oxide for perovskite tandem solar cells[J]. J. Semicond., 2024, 45(11), 110201 doi: 10.1088/1674-4926/24070022
|
-
References
[1] Mariotti S, Köhnen E, Scheler F, et al. Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science, 2023, 381(6653), 63 doi: 10.1126/science.adf5872[2] Lin R X, Wang Y R, Lu Q W, et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature, 2023, 620(7976), 994 doi: 10.1038/s41586-023-06278-z[3] Liu X X, Zhang J J, Tang L T, et al. Over 28% efficiency perovskite/Cu(InGa)Se2 tandem solar cells: Highly efficient sub-cells and their bandgap matching. Energy Environ Sci, 2023, 16(11), 5029 doi: 10.1039/D3EE00869J[4] Fang Z M, Zeng Q, Zuo C T, et al. Perovskite-based tandem solar cells. Sci Bull, 2021, 66(6), 621 doi: 10.1016/j.scib.2020.11.006[5] Zhang Z H, Li Z C, Meng L Y, et al. Perovskite-based tandem solar cells: Get the most out of the sun. Adv Funct Mater, 2020, 30(38), 2001904 doi: 10.1002/adfm.202001904[6] Leijtens T, Bush K A, Prasanna R, et al. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat Energy, 2018, 3(10), 828 doi: 10.1038/s41560-018-0190-4[7] Wang Y R, Zhang M, Xiao K, et al. Recent progress in developing efficient monolithic all-perovskite tandem solar cells. J Semicond, 2020, 41(5), 051201 doi: 10.1088/1674-4926/41/5/051201[8] Zhang L X, Pan X Y, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43(3), 030203 doi: 10.1088/1674-4926/43/3/030203[9] Chen W, Zhu Y D, Xiu J W, et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat Energy, 2022, 7(3), 229 doi: 10.1038/s41560-021-00966-8[10] Green M A, Dunlop E D, Yoshita M, et al. Solar cell efficiency tables (Version 64). Progress Photovoltaics, 2024, 32(7), 425 doi: 10.1002/pip.3831[11] Ma F, Zhao Y, Li J H, et al. Nickel oxide for inverted structure perovskite solar cells. J Energy Chem, 2021, 52, 393 doi: 10.1016/j.jechem.2020.04.027[12] Sajid S, Elseman A M, Huang H, et al. Breakthroughs in NiO x-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy, 2018, 51, 408 doi: 10.1016/j.nanoen.2018.06.082[13] Zhang H, Zhao C X, Yao J X, et al. Dopant-free nio nanocrystals: A low-cost and stable hole transport material for commercializing perovskite optoelectronics. Angew Chem Int Ed Engl, 2023, 62(24), e202219307 doi: 10.1002/anie.202219307[14] Bush K A, Palmstrom A F, Yu Z J, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy, 2017, 2(4), 17009 doi: 10.1038/nenergy.2017.9[15] Li R J, Chen B B, Ren N Y, et al. CsPbCl3-cluster-widened bandgap and inhibited phase segregation in a wide-bandgap perovskite and its application to NiO x-based perovskite/silicon tandem solar cells. Adv Mater, 2022, 34(27), 2201451 doi: 10.1002/adma.202201451[16] Boyd C C, Shallcross R C, Moot T, et al. Overcoming redox reactions at perovskite-nickel oxide interfaces to boost voltages in perovskite solar cells. Joule, 2020, 4(8), 1759 doi: 10.1016/j.joule.2020.06.004[17] Hang P J, Kan C X, Li B, et al. Highly efficient and stable wide-bandgap perovskite solar cells via strain management. Adv Funct Mater, 2023, 33(11), 2214381 doi: 10.1002/adfm.202214381[18] De Bastiani M, Armaroli G, Jalmood R, et al. Mechanical reliability of fullerene/tin oxide interfaces in monolithic perovskite/silicon tandem cells. ACS Energy Lett, 2022, 7(2), 827 doi: 10.1021/acsenergylett.1c02148[19] Lang F, Jošt M, Frohna K, et al. Proton radiation hardness of perovskite tandem photovoltaics. Joule, 2020, 4(5), 1054 doi: 10.1016/j.joule.2020.03.006[20] Hou Y, Aydin E, De Bastiani M, et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367(6482), 1135 doi: 10.1126/science.aaz3691[21] De Bastiani M, Mirabelli A J, Hou Y, et al. Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering. Nat Energy, 2021, 6(2), 167 doi: 10.1038/s41560-020-00756-8[22] Zhumagali S, Isikgor F H, Maity P, et al. Linked nickel oxide/perovskite interface passivation for high-performance textured monolithic tandem solar cells. Adv Energy Mater, 2021, 11(40), 2101662 doi: 10.1002/aenm.202101662[23] Wu Y L, Zheng P T, Peng J, et al. 27.6% perovskite/c-Si tandem solar cells using industrial fabricated topcon device. Adv Energy Mater, 2022, 12(27), 2200821 doi: 10.1002/aenm.202200821[24] Zhu Z J, Yuan S J, Mao K T, et al. Low-temperature atomic layer deposition of hole transport layers for enhanced performance and scalability in textured perovskite/silicon tandem solar cells. Adv Energy Mater, 2024, 2402365 doi: 10.1002/aenm.202402365[25] Li M L, Liu M, Qi F, et al. Self-assembled monolayers for interfacial engineering in solution-processed thin-film electronic devices: Design, fabrication, and applications. Chem Rev, 2024, 124(5), 2138 doi: 10.1021/acs.chemrev.3c00396[26] Chu L, Ding L M. Self-assembled monolayers in perovskite solar cells. J Semicond, 2021, 42(9), 090202 doi: 10.1088/1674-4926/42/9/090202[27] Fang Z M, Nie T, Yan N, et al. Charge transport materials for monolithic perovskite-based tandem solar cells: A review. Sci China Mater, 2023, 66(6), 2107 doi: 10.1007/s40843-022-2437-9[28] Li S, Zheng Z, Ju J Q, et al. A generic strategy to stabilize wide bandgap perovskites for efficient tandem solar cells. Adv Mater, 2024, 36(9), 2307701 doi: 10.1002/adma.202307701[29] Jin Y B, Feng H P, Fang Z, et al. Efficient and stable monolithic perovskite/silicon tandem solar cells enabled by contact-resistance-tunable indium tin oxide interlayer. Adv Mater, 2024, 36(35), 2404010 doi: 10.1002/adma.202404010[30] Mao L, Yang T, Zhang H, et al. Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. Adv Mater, 2022, 34(40), 2206193 doi: 10.1002/adma.202206193[31] Luo X, Luo H W, Li H J, et al. Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Adv Mater, 2023, 35(9), 2207883 doi: 10.1002/adma.202207883[32] Rajagopal A, Yang Z, Jo S B, et al. Highly efficient perovskite-perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv Mater, 2017, 29(34), 1702140 doi: 10.1002/adma.201702140[33] Xiao K, Lin R X, Han Q L, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat Energy, 2020, 5(11), 870 doi: 10.1038/s41560-020-00705-5[34] Wen J, Zhao Y C, Liu Z, et al. Steric engineering enables efficient and photostable wide-bandgap perovskites for all-perovskite tandem solar cells. Adv Mater, 2022, 34(26), 2110356 doi: 10.1002/adma.202110356[35] Lin R X, Xu J, Wei M Y, et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature, 2022, 603(7899), 73 doi: 10.1038/s41586-021-04372-8[36] Xiao K, Lin Y H, Zhang M, et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science, 2022, 376(6594), 762 doi: 10.1126/science.abn7696[37] Li L D, Wang Y R, Wang X Y, et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat Energy, 2022, 7(8), 708 doi: 10.1038/s41560-022-01045-2[38] Li T T, Xu J, Lin R X, et al. Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat Energy, 2023, 8(6), 610 doi: 10.1038/s41560-023-01250-7[39] Wang Y R, Lin R X, Wang X Y, et al. Oxidation-resistant all-perovskite tandem solar cells in substrate configuration. Nat Commun, 2023, 14(1), 1819 doi: 10.1038/s41467-023-37492-y[40] Chen H, Maxwell A, Li C W, et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature, 2023, 613(7945), 676 doi: 10.1038/s41586-022-05541-z[41] Li C W, Chen L, Jiang F Y, et al. Diamine chelates for increased stability in mixed Sn-Pb and all-perovskite tandem solar cells. Nat Energy, 2024 doi: 10.1038/s41560-024-01613-8[42] Jošt M, Bertram T, Koushik D, et al. 21.6%-efficient monolithic perovskite/Cu(In, Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces. ACS Energy Lett, 2019, 4(2), 583 doi: 10.1021/acsenergylett.9b00135[43] Ruiz-Preciado M A, Gota F, Fassl P, et al. Monolithic two-terminal perovskite/cis tandem solar cells with efficiency approaching 25%. ACS Energy Lett, 2022, 7(7), 2273 doi: 10.1021/acsenergylett.2c00707[44] Liu Q S, Jiang Y F, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65(4), 272 doi: 10.1016/j.scib.2020.01.001[45] Jin K, Xiao Z, Ding L M. 18.69% PCE from organic solar cells. J Semicond, 2021, 42(6), 060502 doi: 10.1088/1674-4926/42/6/060502[46] Wu H T, Chen T Y, Li Y K, et al. Phase-segregation free quasi-2D perovskite/organic tandem solar cells with low VOC loss and efficiency beyond 21%. J Mater Chem A, 2023, 11(13), 6877 doi: 10.1039/D3TA00052D[47] Li Y X, Yan Y C, Fu Y A, et al. Highly durable inverted inorganic perovskite/organic tandem solar cells enabled by multifunctional additives. Angew Chem Int Ed Engl, 2024, e202412515 doi: 10.1002/anie.202412515[48] Guo X, Jia Z R, Liu S C, et al. Stabilizing efficient wide-bandgap perovskite in perovskite-organic tandem solar cells. Joule, 2024 doi: 10.1016/j.joule.2024.06.009 -
Proportional views