J. Semicond. > 2025, Volume 46 > Issue 4 > 041401

REVIEWS

Advances in perovskite lasers

Zhicheng Guan1, Hengyu Zhang2 and Guang Yang1,

+ Author Affiliations

 Corresponding author: Guang Yang, guang.yg.yang@polyu.edu.hk

DOI: 10.1088/1674-4926/24100029CSTR: 32376.14.1674-4926.24100029

PDF

Turn off MathJax

Abstract: Perovskite materials have emerged as promising candidates for various optoelectronic applications owing to their remarkable optoelectronic properties and easy solution processing. Metal halide perovskites, as direct-bandgap semiconductors, show an excellent class of optical gain media, which makes them applicable to the development of low-threshold or even thresholdless lasers. This mini review explores recent advances in perovskite-based laser technology, which have led to chiral single-mode microlasers, low-threshold, external-cavity-free lasing devices at room temperature, and other innovative device architectures. Including self-assembled CsPbBr3 microwires that enable edge lasing. Realized continuous-wave (CW) pumped lasing by perovskite material pushes the research of electrically driven perovskite lasers. The capacity to regulate charge transport in halide perovskites further enhances their applicability in optoelectronic systems. The ongoing integration of perovskite materials with advanced photonic structures holds excellent potential for future innovations in laser technology and photovoltaics. We also highlight the transformative potential of perovskite materials in advancing the next generation of efficient and integrated optoelectronic devices.

Key words: perovskiteslasersoptoelectronics



[1]
Park N G. Perovskite solar cells: An emerging photovoltaic technology. Mater Today, 2015, 18, 65 doi: 10.1016/j.mattod.2014.07.007
[2]
Li X, Aftab S, Hussain S, et al. Dimensional diversity (0D, 1D, 2D, and 3D) in perovskite solar cells: Exploring the potential of mixed-dimensional integrations. J Mater Chem A, 2024, 12, 4421 doi: 10.1039/D3TA06953B
[3]
Xu X Y, Liu S F, Kuai Y, et al. Laser fabrication of multi-dimensional perovskite patterns with intelligent anti-counterfeiting applications. Adv Sci, 2024, 11, 2309862 doi: 10.1002/advs.202309862
[4]
Grancini G, Nazeeruddin M K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat Rev Mater, 2019, 4, 4 doi: 10.1038/s41578-018-0065-0
[5]
Ren M, Cao S, Zhao J L, et al. Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes. Nanomicro Lett, 2021, 13, 163 doi: 10.1007/s40820-021-00685-5
[6]
Wang M R, Shi Z F, Fei C B, et al. Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat Energy, 2023, 8, 1229 doi: 10.1038/s41560-023-01362-0
[7]
Xu X Y, Zhou J, Shi Z R, et al. Microwave-assisted in situ synthesis of low-dimensional perovskites within metal-organic frameworks for optoelectronic applications. Appl Mater Today, 2024, 40, 102418 doi: 10.1016/j.apmt.2024.102418
[8]
Zhang L, Sun C J, He T W, et al. High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light Sci Appl, 2021, 10, 61 doi: 10.1038/s41377-021-00501-0
[9]
Duan D W, Ge C Y, Rahaman M Z, et al. Recent progress with one-dimensional metal halide perovskites: From rational synthesis to optoelectronic applications. NPG Asia Mater, 2023, 15, 8 doi: 10.1038/s41427-023-00465-0
[10]
Tyagi D, Laxmi V, Basu N, et al. Recent advances in two-dimensional perovskite materials for light-emitting diodes. Discov Nano, 2024, 19, 109 doi: 10.1186/s11671-024-04044-2
[11]
Zhou C K, Lin H R, He Q Q, et al. Low dimensional metal halide perovskites and hybrids. Mater Sci Eng R Rep, 2019, 137, 38 doi: 10.1016/j.mser.2018.12.001
[12]
Zhang L X, Mei L Y, Wang K Y, et al. Advances in the application of perovskite materials. Nano Micro Lett, 2023, 15, 177 doi: 10.1007/s40820-023-01140-3
[13]
Mahamood R M. Laser basics and laser material interactions. Laser metal deposition process of metals, alloys, and composite materials. Springer, 2018, 11 doi: 10.1007/978-3-319-64985-6
[14]
Lei L, Dong Q, Gundogdu K, et al. Metal halide perovskites for laser applications. Adv Funct Mater, 2021, 31, 2010144 doi: 10.1002/adfm.202010144
[15]
Zhang Q, Shang Q Y, Su R, et al. Halide perovskite semiconductor lasers: Materials, cavity design, and low threshold. Nano Lett, 2021, 21, 1903 doi: 10.1021/acs.nanolett.0c03593
[16]
Ning C Z. Semiconductor nanolasers and the size-energy-efficiency challenge: A review. Adv Photonics, 2019, 1, 014002 doi: 10.1117/1.AP.1.1.014002
[17]
Eaton S W, Fu A, Wong A B, et al. Semiconductor nanowire lasers. Nat Rev Mater, 2016, 1, 16028 doi: 10.1038/natrevmats.2016.28
[18]
Hill M T, Gather M C. Advances in small lasers. Nat Photonics, 2014, 8, 908 doi: 10.1038/nphoton.2014.239
[19]
Ponce F A, Bour D P. Nitride-based semiconductors for blue and green light-emitting devices. Nature, 1997, 386, 351 doi: 10.1038/386351a0
[20]
Kuehne A J C, Gather M C. Organic lasers: Recent developments on materials, device geometries, and fabrication techniques. Chem Rev, 2016, 116, 12823 doi: 10.1021/acs.chemrev.6b00172
[21]
Deschler F, Price M, Pathak S, et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J Phys Chem Lett, 2014, 5, 1421 doi: 10.1021/jz5005285
[22]
Xing G C, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13, 476 doi: 10.1038/nmat3911
[23]
Liu P, Gu C L, Liao Q. Electrically switchable amplified spontaneous emission from lead halide perovskite film. ACS Omega, 2021, 6, 34021 doi: 10.1021/acsomega.1c05364
[24]
Wei Q, Li X J, Liang C, et al. Recent progress in metal halide perovskite micro- and nanolasers. Adv Opt Mater, 2019, 7, 1900080 doi: 10.1002/adom.201900080
[25]
Huang C Y, Zou C, Mao C Y, et al. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics, 2017, 4, 2281 doi: 10.1021/acsphotonics.7b00520
[26]
Cha H, Bae S, Jung H, et al. Single-mode distributed feedback laser operation in solution-processed halide perovskite alloy system. Adv Opt Mater, 2017, 5, 1700545 doi: 10.1002/adom.201700545
[27]
Sun W Z, Liu Y L, Qu G Y, et al. Lead halide perovskite vortex microlasers. Nat Commun, 2020, 11, 4862 doi: 10.1038/s41467-020-18669-1
[28]
Wu Z Y, Chen J, Mi Y, et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers. Adv Opt Mater, 2018, 6, 1800674 doi: 10.1002/adom.201800674
[29]
Su R, Diederichs C, Wang J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 2017, 17, 3982 doi: 10.1021/acs.nanolett.7b01956
[30]
Huang C, Zhang C, Xiao S M, et al. Ultrafast control of vortex microlasers. Science, 2020, 367, 1018 doi: 10.1126/science.aba4597
[31]
Huang Z T, Yin C W, Hong Y H, et al. Hybrid plasmonic surface lattice resonance perovskite lasers on silver nanoparticle arrays. Adv Optical Mater, 2021, 9, 2100299 doi: 10.1002/adom.202100299
[32]
Lin H C, Lee Y C, Lin C C, et al. Integration of on-chip perovskite nanocrystal laser and long-range surface plasmon polariton waveguide with etching-free process. Nanoscale, 2022, 14, 10075 doi: 10.1039/D2NR01611G
[33]
Samuel I D W, Turnbull G A. Organic semiconductor lasers. Chem Rev, 2007, 107, 1272 doi: 10.1021/cr050152i
[34]
Gu H T, Xu H Y, Yang C, et al. Color-tunable lead halide perovskite single-mode chiral microlasers with exceptionally high glum. Nano Lett, 2024, 24, 13333 doi: 10.1021/acs.nanolett.4c03838
[35]
Zhang G, Haw J Y, Cai H, et al. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat Photonics, 2019, 13, 839 doi: 10.1038/s41566-019-0504-5
[36]
Liu Q, Wei Q, Ren H, et al. Circular polarization-resolved ultraviolet photonic artificial synapse based on chiral perovskite. Nat Commun, 2023, 14, 7179 doi: 10.1038/s41467-023-43034-3
[37]
Zhang X D, Liu Y L, Han J C, et al. Chiral emission from resonant metasurfaces. Science, 2022, 377, 1215 doi: 10.1126/science.abq7870
[38]
Cao X H, Xing S Y, Lai R C, et al. Low-threshold, external-cavity-free flexible perovskite lasers. Adv Funct Mater, 2023, 33, 2211841 doi: 10.1002/adfm.202211841
[39]
Zhang C H, Dong H Y, Zhang C, et al. Photonic skins based on flexible organic microlaser arrays. Sci Adv, 2021, 7, eabh3530 doi: 10.1126/sciadv.abh3530
[40]
Karl M, Glackin J M E, Schubert M, et al. Flexible and ultra-lightweight polymer membrane lasers. Nat Commun, 2018, 9, 1525 doi: 10.1038/s41467-018-03874-w
[41]
Kędziora M, Opala A, Mastria R, et al. Predesigned perovskite crystal waveguides for room-temperature exciton-polariton condensation and edge lasing. Nat Mater, 2024, 23, 1515 doi: 10.1038/s41563-024-01980-3
[42]
Qin C J, Sandanayaka A S D, Zhao C Y, et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 2020, 585, 53 doi: 10.1038/s41586-020-2621-1
[43]
De Giorgi M L, Anni M. Amplified spontaneous emission and lasing in lead halide perovskites: State of the art and perspectives. Appl Sci, 2019, 9, 4591 doi: 10.3390/app9214591
[44]
Elkhouly K, Goldberg I, Zhang X, et al. Electrically assisted amplified spontaneous emission in perovskite light-emitting diodes. Nat Photonics, 2024, 18, 132 doi: 10.1038/s41566-023-01341-7
[45]
Xiong W T, Tang W D, Zhang G, et al. Controllable p- and n-type behaviours in emissive perovskite semiconductors. Nature, 2024, 633, 344 doi: 10.1038/s41586-024-07792-4
Fig. 1.  (Color online) Perovskite materials with dimensional diversity (0D,1D, 2D/quasi-2D, and 3D). Reproduced with permission[11]. Copyright 2019, Elsevier.

Fig. 2.  (Color online) Applications of perovskite materials. Reproduced with permission[12], Copyright 2023, Nature Publishing Group.

Fig. 3.  (Color online) Overview of the development of metal halide perovskite lasers. Reproduced with permission[15], Copyright 2021, American Chemical Society.

Fig. 4.  (Color online) (a) Schematic of the chiral microlaser architecture. (b) The PL spectra of the CsPbBr3 MR, measured with L- and R-CP polarizers. (c) Pump-power-dependent PL intensity and FWHM of the device. (d) Measured CPL spectra of the composite device above the threshold. (e) Tunable lasing spectrum of CsPbClxBr3−x MRs. (f) Measured CPL spectra of the CsPbCl3 composite device above the threshold. (g) Operational stability demonstrates the aging of lasing intensity under continuous excitation from a pumped-pulse laser in ambient conditions. (h) Measured glum spectra of L- and R-CPL after one month at room temperature and about 60% RH in ambient conditions. Figs. 4(a)−4(h) are reproduced with permission[34], Copyright 2024, The Authors.

Fig. 5.  (Color online) (a)−(c) Characteristics of external-cavity-free flexible perovskite lasers. (a) Beam profile image of the flexible perovskite laser. (b) Emission spectra at various pump fluences. (c) The intensity and FWHM of emission spectra under a range of pump fluences. Figs. 5(a)−5(c) are reproduced with permission[38], Copyright 2023, Wiley-VCH GmbH. (d) Spatially resolved emission spectra of the waveguide at 1.2Pth (300 μJ∙cm−2). (e) Averaged emission spectrum across the center (0 ± 2 μm) and edge (6 ± 1 μm) of the waveguide at the same pumping powers as in Fig. 5(d). The inset in Fig. 5(e) displays a magnified view of the main peak with the fitted Gaussian curve. Figs. 5(d) and 5(e) are reproduced with permission[41], Copyright 2024, Nature Publishing Group. (f) Schematic cross-section of the vertical transparent PeLED, with SAM, M, and BCP representing self-assembled monolayer, metal, and bathocuproine, respectively. (g) Top-view SEM analysis of the perovskite emitting layer. (h) Output light intensity as a function of the input laser fluence (Iopt,ns) or an equivalent peak laser power (Ppeak). Figs. 5(f)−5(h) are reproduced with permission[44], Copyright 2024, Nature Publishing Group.

[1]
Park N G. Perovskite solar cells: An emerging photovoltaic technology. Mater Today, 2015, 18, 65 doi: 10.1016/j.mattod.2014.07.007
[2]
Li X, Aftab S, Hussain S, et al. Dimensional diversity (0D, 1D, 2D, and 3D) in perovskite solar cells: Exploring the potential of mixed-dimensional integrations. J Mater Chem A, 2024, 12, 4421 doi: 10.1039/D3TA06953B
[3]
Xu X Y, Liu S F, Kuai Y, et al. Laser fabrication of multi-dimensional perovskite patterns with intelligent anti-counterfeiting applications. Adv Sci, 2024, 11, 2309862 doi: 10.1002/advs.202309862
[4]
Grancini G, Nazeeruddin M K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat Rev Mater, 2019, 4, 4 doi: 10.1038/s41578-018-0065-0
[5]
Ren M, Cao S, Zhao J L, et al. Advances and challenges in two-dimensional organic-inorganic hybrid perovskites toward high-performance light-emitting diodes. Nanomicro Lett, 2021, 13, 163 doi: 10.1007/s40820-021-00685-5
[6]
Wang M R, Shi Z F, Fei C B, et al. Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat Energy, 2023, 8, 1229 doi: 10.1038/s41560-023-01362-0
[7]
Xu X Y, Zhou J, Shi Z R, et al. Microwave-assisted in situ synthesis of low-dimensional perovskites within metal-organic frameworks for optoelectronic applications. Appl Mater Today, 2024, 40, 102418 doi: 10.1016/j.apmt.2024.102418
[8]
Zhang L, Sun C J, He T W, et al. High-performance quasi-2D perovskite light-emitting diodes: From materials to devices. Light Sci Appl, 2021, 10, 61 doi: 10.1038/s41377-021-00501-0
[9]
Duan D W, Ge C Y, Rahaman M Z, et al. Recent progress with one-dimensional metal halide perovskites: From rational synthesis to optoelectronic applications. NPG Asia Mater, 2023, 15, 8 doi: 10.1038/s41427-023-00465-0
[10]
Tyagi D, Laxmi V, Basu N, et al. Recent advances in two-dimensional perovskite materials for light-emitting diodes. Discov Nano, 2024, 19, 109 doi: 10.1186/s11671-024-04044-2
[11]
Zhou C K, Lin H R, He Q Q, et al. Low dimensional metal halide perovskites and hybrids. Mater Sci Eng R Rep, 2019, 137, 38 doi: 10.1016/j.mser.2018.12.001
[12]
Zhang L X, Mei L Y, Wang K Y, et al. Advances in the application of perovskite materials. Nano Micro Lett, 2023, 15, 177 doi: 10.1007/s40820-023-01140-3
[13]
Mahamood R M. Laser basics and laser material interactions. Laser metal deposition process of metals, alloys, and composite materials. Springer, 2018, 11 doi: 10.1007/978-3-319-64985-6
[14]
Lei L, Dong Q, Gundogdu K, et al. Metal halide perovskites for laser applications. Adv Funct Mater, 2021, 31, 2010144 doi: 10.1002/adfm.202010144
[15]
Zhang Q, Shang Q Y, Su R, et al. Halide perovskite semiconductor lasers: Materials, cavity design, and low threshold. Nano Lett, 2021, 21, 1903 doi: 10.1021/acs.nanolett.0c03593
[16]
Ning C Z. Semiconductor nanolasers and the size-energy-efficiency challenge: A review. Adv Photonics, 2019, 1, 014002 doi: 10.1117/1.AP.1.1.014002
[17]
Eaton S W, Fu A, Wong A B, et al. Semiconductor nanowire lasers. Nat Rev Mater, 2016, 1, 16028 doi: 10.1038/natrevmats.2016.28
[18]
Hill M T, Gather M C. Advances in small lasers. Nat Photonics, 2014, 8, 908 doi: 10.1038/nphoton.2014.239
[19]
Ponce F A, Bour D P. Nitride-based semiconductors for blue and green light-emitting devices. Nature, 1997, 386, 351 doi: 10.1038/386351a0
[20]
Kuehne A J C, Gather M C. Organic lasers: Recent developments on materials, device geometries, and fabrication techniques. Chem Rev, 2016, 116, 12823 doi: 10.1021/acs.chemrev.6b00172
[21]
Deschler F, Price M, Pathak S, et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J Phys Chem Lett, 2014, 5, 1421 doi: 10.1021/jz5005285
[22]
Xing G C, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13, 476 doi: 10.1038/nmat3911
[23]
Liu P, Gu C L, Liao Q. Electrically switchable amplified spontaneous emission from lead halide perovskite film. ACS Omega, 2021, 6, 34021 doi: 10.1021/acsomega.1c05364
[24]
Wei Q, Li X J, Liang C, et al. Recent progress in metal halide perovskite micro- and nanolasers. Adv Opt Mater, 2019, 7, 1900080 doi: 10.1002/adom.201900080
[25]
Huang C Y, Zou C, Mao C Y, et al. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics, 2017, 4, 2281 doi: 10.1021/acsphotonics.7b00520
[26]
Cha H, Bae S, Jung H, et al. Single-mode distributed feedback laser operation in solution-processed halide perovskite alloy system. Adv Opt Mater, 2017, 5, 1700545 doi: 10.1002/adom.201700545
[27]
Sun W Z, Liu Y L, Qu G Y, et al. Lead halide perovskite vortex microlasers. Nat Commun, 2020, 11, 4862 doi: 10.1038/s41467-020-18669-1
[28]
Wu Z Y, Chen J, Mi Y, et al. All-inorganic CsPbBr3 nanowire based plasmonic lasers. Adv Opt Mater, 2018, 6, 1800674 doi: 10.1002/adom.201800674
[29]
Su R, Diederichs C, Wang J, et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett, 2017, 17, 3982 doi: 10.1021/acs.nanolett.7b01956
[30]
Huang C, Zhang C, Xiao S M, et al. Ultrafast control of vortex microlasers. Science, 2020, 367, 1018 doi: 10.1126/science.aba4597
[31]
Huang Z T, Yin C W, Hong Y H, et al. Hybrid plasmonic surface lattice resonance perovskite lasers on silver nanoparticle arrays. Adv Optical Mater, 2021, 9, 2100299 doi: 10.1002/adom.202100299
[32]
Lin H C, Lee Y C, Lin C C, et al. Integration of on-chip perovskite nanocrystal laser and long-range surface plasmon polariton waveguide with etching-free process. Nanoscale, 2022, 14, 10075 doi: 10.1039/D2NR01611G
[33]
Samuel I D W, Turnbull G A. Organic semiconductor lasers. Chem Rev, 2007, 107, 1272 doi: 10.1021/cr050152i
[34]
Gu H T, Xu H Y, Yang C, et al. Color-tunable lead halide perovskite single-mode chiral microlasers with exceptionally high glum. Nano Lett, 2024, 24, 13333 doi: 10.1021/acs.nanolett.4c03838
[35]
Zhang G, Haw J Y, Cai H, et al. An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat Photonics, 2019, 13, 839 doi: 10.1038/s41566-019-0504-5
[36]
Liu Q, Wei Q, Ren H, et al. Circular polarization-resolved ultraviolet photonic artificial synapse based on chiral perovskite. Nat Commun, 2023, 14, 7179 doi: 10.1038/s41467-023-43034-3
[37]
Zhang X D, Liu Y L, Han J C, et al. Chiral emission from resonant metasurfaces. Science, 2022, 377, 1215 doi: 10.1126/science.abq7870
[38]
Cao X H, Xing S Y, Lai R C, et al. Low-threshold, external-cavity-free flexible perovskite lasers. Adv Funct Mater, 2023, 33, 2211841 doi: 10.1002/adfm.202211841
[39]
Zhang C H, Dong H Y, Zhang C, et al. Photonic skins based on flexible organic microlaser arrays. Sci Adv, 2021, 7, eabh3530 doi: 10.1126/sciadv.abh3530
[40]
Karl M, Glackin J M E, Schubert M, et al. Flexible and ultra-lightweight polymer membrane lasers. Nat Commun, 2018, 9, 1525 doi: 10.1038/s41467-018-03874-w
[41]
Kędziora M, Opala A, Mastria R, et al. Predesigned perovskite crystal waveguides for room-temperature exciton-polariton condensation and edge lasing. Nat Mater, 2024, 23, 1515 doi: 10.1038/s41563-024-01980-3
[42]
Qin C J, Sandanayaka A S D, Zhao C Y, et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 2020, 585, 53 doi: 10.1038/s41586-020-2621-1
[43]
De Giorgi M L, Anni M. Amplified spontaneous emission and lasing in lead halide perovskites: State of the art and perspectives. Appl Sci, 2019, 9, 4591 doi: 10.3390/app9214591
[44]
Elkhouly K, Goldberg I, Zhang X, et al. Electrically assisted amplified spontaneous emission in perovskite light-emitting diodes. Nat Photonics, 2024, 18, 132 doi: 10.1038/s41566-023-01341-7
[45]
Xiong W T, Tang W D, Zhang G, et al. Controllable p- and n-type behaviours in emissive perovskite semiconductors. Nature, 2024, 633, 344 doi: 10.1038/s41586-024-07792-4
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 882 Times PDF downloads: 186 Times Cited by: 0 Times

    History

    Received: 21 October 2024 Revised: 28 November 2024 Online: Accepted Manuscript: 09 December 2024Uncorrected proof: 03 March 2025Published: 10 April 2025

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhicheng Guan, Hengyu Zhang, Guang Yang. Advances in perovskite lasers[J]. Journal of Semiconductors, 2025, 46(4): 041401. doi: 10.1088/1674-4926/24100029 ****Z C Guan, H Y Zhang, and G Yang, Advances in perovskite lasers[J]. J. Semicond., 2025, 46(4), 041401 doi: 10.1088/1674-4926/24100029
      Citation:
      Zhicheng Guan, Hengyu Zhang, Guang Yang. Advances in perovskite lasers[J]. Journal of Semiconductors, 2025, 46(4): 041401. doi: 10.1088/1674-4926/24100029 ****
      Z C Guan, H Y Zhang, and G Yang, Advances in perovskite lasers[J]. J. Semicond., 2025, 46(4), 041401 doi: 10.1088/1674-4926/24100029

      Advances in perovskite lasers

      DOI: 10.1088/1674-4926/24100029
      CSTR: 32376.14.1674-4926.24100029
      More Information
      • Zhicheng Guan is a senior student from The Chinese University of Hong Kong, Shenzhen. Now he is a visiting scholar at The Hong Kong Polytechnic University under the supervision of Prof. Guang Yang
      • Hengyu Zhang received his B.S. degree (2023) from School of Materials Science and Chemical Engineering, Harbin Engineering University. He is currently a second-year doctoral student in State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University. His research work focuses on the metal halide perovskite materials and their applications in solar cells
      • Guang Yang is an Assistant Professor in the Department of Electrical and Electronic Engineering at the Hong Kong Polytechnic University. He received his Ph.D degree from the Wuhan University in 2019. He did the postdoc training at University of North Carolina at Chapel Hill from 2019 to 2023. His group present research focuses on the optoelectronic characteristics of perovskite materials and their applications in optoelectronics, such as high throughput fabrication of perovskite modules and perovskite-based tandem devices as well as device physics
      • Corresponding author: guang.yg.yang@polyu.edu.hk
      • Received Date: 2024-10-21
      • Revised Date: 2024-11-28
      • Available Online: 2024-12-09

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return