Citation: |
Napasuda Wichaiyo, Yuyao Wei, Chao Ding, Guozheng Shi, Witoon Yindeesuk, Liang Wang, Huān Bì, Jiaqi Liu, Shuzi Hayase, Yusheng Li, Yongge Yang, Qing Shen. Synthesis of p-type PbS quantum dot ink via inorganic ligand exchange in solution for high-efficiency and stable solar cells[J]. Journal of Semiconductors, 2025, 46(4): 042104. doi: 10.1088/1674-4926/25030003
****
N Wichaiyo, Y Y Wei, C Ding, G Z Shi, W Yindeesuk, L Wang, H Bì, J Q Liu, S Hayase, Y S Li, Y G Yang, and Q Shen, Synthesis of p-type PbS quantum dot ink via inorganic ligand exchange in solution for high-efficiency and stable solar cells[J]. J. Semicond., 2025, 46(4), 042104 doi: 10.1088/1674-4926/25030003
|
Synthesis of p-type PbS quantum dot ink via inorganic ligand exchange in solution for high-efficiency and stable solar cells
DOI: 10.1088/1674-4926/25030003
CSTR: 32376.14.1674-4926.25030003
More Information-
Abstract
Traditional p-type colloidal quantum dot (CQD) hole transport layers (HTLs) used in CQD solar cells (CQDSCs) are commonly based on organic ligands exchange and the layer-by-layer (LbL) technique. Nonetheless, the ligand detachment and complex fabrication process introduce surface defects, compromising device stability and efficiency. In this work, we propose a solution-phase ligand exchange (SPLE) method utilizing inorganic ligands to develop stable p-type lead sulfide (PbS) CQD inks for the first time. Various amounts of tin (II) iodide (SnI2) were mixed with lead halide (PbX2; X = I, Br) in the ligand solution. By precisely controlling the SnI₂ concentration, we regulate the transition of PbS QDs from n-type to p-type. PbS CQDSCs were fabricated using two different HTL approaches: one with 1,2-ethanedithiol (EDT)-passivated QDs via the LbL method (control) and another with inorganic ligand-passivated QD ink (target). The target devices achieved a higher power conversion efficiency (PCE) of 10.93%, compared to 9.83% for the control devices. This improvement is attributed to reduced interfacial defects and enhanced carrier mobility. The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands, paving the way for high-performance and flexible CQD-based optoelectronic devices. -
References
[1] Choi M J, García de Arquer F P, Proppe A H, et al. Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nat Commun, 2020, 11(1), 103 doi: 10.1038/s41467-019-13437-2[2] Voznyy O, Zhitomirsky D, Stadler P, et al. A charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano, 2012, 6(9), 8448 doi: 10.1021/nn303364d[3] Meng L J, Xu Q W, Thakur U K, et al. Unusual surface ligand doping-induced p-type quantum dot solids and their application in solar cells. ACS Appl Mater Interfaces, 2020, 12(48), 53942 doi: 10.1021/acsami.0c15576[4] Crisp R W, Kroupa D M, Marshall A R, et al. Metal halide solid-state surface treatment for high efficiency PbS and PbSe QD solar cells. Sci Rep, 2015, 5, 9945 doi: 10.1038/srep09945[5] Nozik A J. Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett, 2008, 457(1/2/3), 3 doi: 10.1016/j.cplett.2008.03.094[6] Giansante C, Infante I, Fabiano E, et al. "Darker-than-black" PbS quantum dots: Enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. J Am Chem Soc, 2015, 137(5), 1875 doi: 10.1021/ja510739q[7] Moreels I, Lambert K, Smeets D, et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano, 2009, 3(10), 3023 doi: 10.1021/nn900863a[8] Zhao H G, Rosei F. Colloidal quantum dots for solar technologies. Chem, 2017, 3(2), 229 doi: 10.1016/j.chempr.2017.07.007[9] Meng L J, Xu Q W, Zhang J W, et al. Colloidal quantum dot materials for next-generation near-infrared optoelectronics. Chem Commun, 2024, 60(9), 1072 doi: 10.1039/D3CC04315K[10] Lin L H, Dong Z H, Wang J, et al. Flexible ultrahigh-resolution quantum-dot light-emitting diodes. Adv Funct Materials, 2024, 34(48), 2408604 doi: 10.1002/adfm.202408604[11] Wang H, Pinna J, Romero D G, et al. PbS quantum dots ink with months-long shelf-lifetime enabling scalable and efficient short-wavelength infrared photodetectors. Adv Mater, 2024, 36(19), 2311526 doi: 10.1002/adma.202311526[12] Wei H L, Ji X Y, Cao J G, et al. High-performance CsPbI3 quantum dot photodetector with a vertical structure based on the Frenkel-Poole emission effect. ACS Nano, 2024, 18(39), 26643 doi: 10.1021/acsnano.4c05111[13] Song H, Yang D, Wang D K, et al. Size-dependent thermal activation emissions in infrared PbS colloidal quantum dots. J Phys Chem C, 2024, 128(23), 9676 doi: 10.1021/acs.jpcc.4c02444[14] Wang C, Wang Y L, Jia Y W, et al. Precursor chemistry enables the surface ligand control of PbS quantum dots for efficient photovoltaics. Adv Sci, 2023, 10(4), e2204655 doi: 10.1002/advs.202204655[15] Ding C, Wang D D, Liu D, et al. Over 15% efficiency PbS quantum-dot solar cells by synergistic effects of three interface engineering: Reducing nonradiative recombination and balancing charge carrier extraction. Adv Energy Mater, 2022, 12(35), 2270148 doi: 10.1002/aenm.202270148[16] Sun B, Johnston A, Xu C, et al. Monolayer perovskite bridges enable strong quantum dot coupling for efficient solar cells. Joule, 2020, 4(7), 1542 doi: 10.1016/j.joule.2020.05.011[17] Wei Y Y, Ding C, Shi G Z, et al. Stronger coupling of quantum dots in hole transport layer through intermediate ligand exchange to enhance the efficiency of PbS quantum dot solar cells. Small Methods, 2024, 8(12), e2400015 doi: 10.1002/smtd.202400015[18] Lan X Z, Masala S, Sargent E H. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nat Mater, 2014, 13(3), 233 doi: 10.1038/nmat3816[19] Liu M X, Che F L, Sun B, et al. Controlled steric hindrance enables efficient ligand exchange for stable, infrared-bandgap quantum dot inks. ACS Energy Lett, 2019, 4(6), 1225 doi: 10.1021/acsenergylett.9b00388[20] Zhidkov I S, Akbulatov A F, Poteryaev A I, et al. The photochemical stability of PbI2 and PbBr2: optical and XPS and DFT studies. Coatings, 2023, 13(4), 784 doi: 10.3390/coatings13040784[21] Wang C, Wu Q, Wang Y L, et al. P-type PbS quantum dot solar ink via hydrogen-bonding modulated solvation for high-efficiency photovoltaics. Adv Funct Materials, 2024, 34(18), 2315365 doi: 10.1002/adfm.202315365[22] Dambhare N V, Sharma A, Mahajan C, et al. Thiocyanate- and thiol-functionalized p-doped quantum dot colloids for the development of bulk homojunction solar cells. Energy Tech, 2022, 10(9), 2200455 doi: 10.1002/ente.202200455[23] Teh Z L, Hu L, Zhang Z L, et al. Enhanced power conversion efficiency via hybrid ligand exchange treatment of p-type PbS quantum dots. ACS Appl Mater Interfaces, 2020, 12(20), 22751 doi: 10.1021/acsami.9b23492[24] Fang D, He F, Xie J L, et al. Calibration of binding energy positions with C1s for XPS results. J Wuhan Univ Technol Mater Sci Ed, 2020, 35(4), 711 doi: 10.1007/s11595-020-2312-7[25] Xiong W T, Tang W D, Zhang G, et al. Controllable p- and n-type behaviours in emissive perovskite semiconductors. Nature, 2024, 633(8029), 344 doi: 10.1038/s41586-024-07792-4[26] Hossain T, Joy S, Draffen K, et al. Oxidation in tin halide perovskites: Influence of acidic and basic additives. ACS Appl Energy Mater, 2023, 6(24), 12334 doi: 10.1021/acsaem.3c02150[27] Yokoyama K, Omata T, Yokoyama S, et al. Ambient aqueous-phase synthesis of highly stable methylammonium tin iodide perovskites using alkali iodides and ascorbic acid. ACS Appl Energy Mater, 2023, 6(21), 11070 doi: 10.1021/acsaem.3c01909[28] Bhardwaj A, Marongiu D, Demontis V, et al. Single crystal Sn-based halide perovskites. Nanomater, 2024, 14(17), 1444 doi: 10.3390/nano14171444 -
Supplements
Supporting_information.pdf
-
Proportional views