J. Semicond. > 2025, Volume 46 > Issue 4 > 042701

ARTICLES

High carrier collection efficiency in graphene/GaAs heterojunction photodetectors

Baorui Fang1, Ye Tian2, and Zongmin Ma1,

+ Author Affiliations

 Corresponding author: Ye Tian, yetian2022@sinano.ac.cn; Zongmin Ma, mzm9909@163.com

DOI: 10.1088/1674-4926/24110002CSTR: 32376.14.1674-4926.24110002

PDF

Turn off MathJax

Abstract: In the rapidly evolving field of modern technology, near-infrared (NIR) photodetectors are extremely crucial for efficient and reliable optical communications. The graphene/GaAs Schottky junction photodetector leverages graphene’s exceptional carrier mobility and broadband absorption, coupled with GaAs’s strong absorption in the NIR spectrum, to achieve high responsivity and rapid response times. Here, we present a NIR photodetector employing a graphene/GaAs Schottky junction tailored for communication wavelengths. We fabricated high-performance graphene/GaAs Schottky junction devices with interdigitated electrodes of varying finger widths, systematically investigating their impact on device performance. The experimental results demonstrate that incorporating interdigitated electrodes significantly enhances the collection efficiency of photogenerated carriers in graphene/GaAs photodetectors. When illuminated by 808 nm NIR light at an intensity of 7.23 mW/cm2, the device achieves an impressive switch ratio of 10⁷, along with a high responsivity of 40.1 mA/W and a remarkable detectivity of 2.89 × 10¹³ Jones. Additionally, the device is characterized by rapid response times, with rise and fall times of 18.5 and 17.5 μs, respectively, at a 3 dB bandwidth. These findings underscore the significant potential of high-performance graphene/GaAs photodetectors for applications in NIR optoelectronic systems.

Key words: grapheneGaAsSchottky junctioninterdigitated electrode



[1]
Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotech, 2013, 8, 497 doi: 10.1038/nnano.2013.100
[2]
Muench J, Ruocco A, Giambra M A, et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett, 2019, 19, 7632 doi: 10.1021/acs.nanolett.9b02238
[3]
Furchi M, Urich A, Pospischil A, et al. Microcavity-integrated graphene photodetector. Nano Lett, 2012, 12, 2773 doi: 10.1021/nl204512x
[4]
Larki F, Abdi Y, Kameli P, et al. An effort towards full graphene photodetectors. Photonic Sens, 2022, 12, 31 doi: 10.1007/s13320-020-0600-7
[5]
Kind H, Yan H, Messer B, et al. Nanowire ultraviolet photodetectors and optical switches. Adv Mater, 2002, 14, 158 doi: 10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
[6]
He T, Ma H, Wang Z, et al. On-chip optoelectronic logic gates operating in the telecom band. Nat Photonics, 2024, 18, 60 doi: 10.1038/s41566-023-01309-7
[7]
Lee C M, Engelbrecht C J, Soper T D, et al. Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging. J Biophotonics, 2010, 3, 385 doi: 10.1002/jbio.200900087
[8]
Wang Z, Tan C H, Peng M, et al. Giant infrared bulk photovoltaic effect in tellurene for broad-spectrum neuromodulation. Light Sci Appl, 2024, 13, 277 doi: 10.1038/s41377-024-01640-w
[9]
Zhao T G, Guo J X, Li T, et al. Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem Soc Rev, 2023, 52, 1650 doi: 10.1039/D2CS00657J
[10]
Qiu H, Yu Z H, Zhao T G, et al. Two-dimensional materials for future information technology: Status and prospects. Sci China Inf Sci, 2024, 67, 160400 doi: 10.1007/s11432-024-4033-8
[11]
Su W H, Zhang S, Liu C, et al. Interlayer transition induced infrared response in ReS2/2D perovskite van der waals heterostructure photodetector. Nano Lett, 2022, 22, 10192 doi: 10.1021/acs.nanolett.2c04328
[12]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nature Nanotech, 2011, 6, 147 doi: 10.1038/nnano.2010.279
[13]
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech, 2012, 7, 699 doi: 10.1038/nnano.2012.193
[14]
Chhowalla M, Jena D, Zhang H. Two-dimensional semiconductors for transistors. Nat Rev Mater, 2016, 1, 16052
[15]
Dou L T, Yang Y, You J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun, 2014, 5, 5404 doi: 10.1038/ncomms6404
[16]
An X H, Liu F Z, Jung Y J, et al. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett, 2013, 13, 909 doi: 10.1021/nl303682j
[17]
Goossens S, Navickaite G, Monasterio C, et al. Broadband image sensor array based on graphene–CMOS integration. Nat Photonics, 2017, 11, 366 doi: 10.1038/nphoton.2017.75
[18]
Ping J F, Fan Z X, Sindoro M, et al. Recent advances in sensing applications of two-dimensional transition metal dichalcogenide nanosheets and their composites. Adv Funct Mater, 2017, 27, 1605817 doi: 10.1002/adfm.201605817
[19]
Li J, Chen C, Liu S L, et al. Ultrafast electrochemical expansion of black phosphorus toward high-yield synthesis of few-layer phosphorene. Chem Mater, 2018, 30, 2742 doi: 10.1021/acs.chemmater.8b00521
[20]
Wang Y, Jaiswal M, Lin M, et al. Electronic properties of nanodiamond decorated graphene. ACS Nano, 2012, 6, 1018 doi: 10.1021/nn204362p
[21]
Zhang B Y, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat Commun, 2013, 4, 1811 doi: 10.1038/ncomms2830
[22]
Zhao T G, Chen Y, Xu T F, et al. Topological insulator Bi2Se3 heterojunction with a low dark current for midwave infrared photodetection. ACS Photonics, 2024, 11, 2450 doi: 10.1021/acsphotonics.4c00347
[23]
Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5, 574 doi: 10.1038/nnano.2010.132
[24]
Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012, 487, 82 doi: 10.1038/nature11253
[25]
Xia F N, Wang H, Xiao D, et al. Two-dimensional material nanophotonics. Nature Photon, 2014, 8, 899 doi: 10.1038/nphoton.2014.271
[26]
Liu C S, Chen H W, Wang S Y, et al. Two-dimensional materials for next-generation computing technologies. Nat Nanotechnol, 2020, 15, 545 doi: 10.1038/s41565-020-0724-3
[27]
Liu Y, Huang Y, Duan X. Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567, 323 doi: 10.1038/s41586-019-1013-x
[28]
Luo L B, Hu H, Wang X H, et al. A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity. J Mater Chem C, 2015, 3, 4723 doi: 10.1039/C5TC00449G
[29]
Qu J, Chen J. Ag NPs and MoS2 QDs double modified graphene/GaAs near-infrared photodetector. Semicond Sci Technol, 2023, 38, 055007 doi: 10.1088/1361-6641/acc3bc
[30]
Wu J H, Yang Z W, Qiu C Y, et al. Enhanced performance of a graphene/GaAs self-driven near-infrared photodetector with upconversion nanoparticles. Nanoscale, 2018, 10, 8023 doi: 10.1039/C8NR00594J
[31]
Cai Z L, He X Y, Wang K K, et al. Enhancing performance of GaN/Ga2O3 P-N junction uvc photodetectors via interdigitated structure. Small Methods, 2024, 8, e2301148 doi: 10.1002/smtd.202301148
[32]
Zeng L H, Lin S H, Li Z J, et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv Funct Mater, 2018, 28, 1705970 doi: 10.1002/adfm.201705970
[33]
Wang L, Jie J S, Shao Z B, et al. MoS2 /Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible–near infrared photodetectors. Adv Funct Mater, 2015, 25, 2910 doi: 10.1002/adfm.201500216
[34]
Wang F, Zhang T, Xie R Z, et al. How to characterize figures of merit of two-dimensional photodetectors. Nat Commun, 2023, 14, 2224 doi: 10.1038/s41467-023-37635-1
[35]
Wang H. High gain single GaAs nanowire photodetector. Appl Phys Lett, 2013, 103, 093101
[36]
Wu J H, Qiu C Y, Feng S R, et al. A synergetic enhancement of localized surface plasmon resonance and photo-induced effect for graphene/GaAs photodetector. Nanotechnology, 2020, 31, 105204 doi: 10.1088/1361-6528/ab5a08
Fig. 1.  (Color online) (a) 3D structure diagram of the graphene/GaAs heterostructure device with interdigitated electrodes. (b) SEM images of graphene/GaAs heterojunction photodetectors with interdigitated electrodes. (c) Raman spectrum of graphene. (d) Graphene/GaAs energy band diagram under illumination.

Fig. 2.  (Color online) (a) The IV curves of GaAs/graphene devices with interdigitated electrodes and standard graphene/GaAs devices under dark conditions and 808 nm illumination (insert: the schematic diagram of standard graphene/GaAs devices). (b) Momentary photoresponse features under 808 nm illumination conditions at zero bias. (c) IV characteristics of graphene/GaAs heterojunction detectors with interdigitated electrodes of varying widths under dark conditions and 808 nm illumination. (d) IV characteristics of graphene/GaAs heterojunction detectors with interdigitated electrodes of varying widths under dark conditions and 1064 nm illumination.

Fig. 3.  (Color online) (a) IV and (b) IT characteristics of the graphene/GaAs heterojunction device with interdigitated electrodes under different light intensities at 808 nm illumination. (c) Biaxial logarithmic depiction of photoelectric current against light intensity. (d) Responsivity and computed specific detectivity for the device versus light intensity. (e) IV characteristics and (f) IT characteristics of the graphene/GaAs heterojunction device with interdigitated electrodes under varying light intensities at 1064 nm illumination.

Fig. 4.  (Color online) Frequency response of the graphene/GaAs heterojunction photodetector with interdigitated electrodes to 808 nm light at (a) 2 kHz and (b) 9581 Hz. (c) The 3 dB bandwidth of the graphene/GaAs heterojunction detector with interdigitated electrodes. (d) The device’s dynamic rise and fall characteristics under 9581 Hz pulsed light.

Table 1.   Summary of the characteristics of the graphene/GaAs heterojunction photodetector.

Devices Measurement
conditions (nm)
Ion/Ioff R (mA/W) D* (Jones) Rise/fall time
(μs)
Ref.
Interdigitated electrodes-graphene/GaAs 808@0 V 107 41.4 2.89 × 1013 18.5/17.5 This work
BLG/AlOx/GaAs 850@0 V 105 5 2.88 × 1011 0.32/0.38 [28]
Ag NPs-MoS2 QDs/graphene/GaAs 808@−1 V 21.1 8.42 × 1012 15.87/89.95 [29]
GaAs nanocone array/MLG array Schottky junction 532@0 V 104 1.73 1.83 × 1011 72/122 [35]
Si QDs-Au NPs/graphene/GaAs 532@0 V 104 435 2 × 1012 <40 [36]
DownLoad: CSV
[1]
Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotech, 2013, 8, 497 doi: 10.1038/nnano.2013.100
[2]
Muench J, Ruocco A, Giambra M A, et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett, 2019, 19, 7632 doi: 10.1021/acs.nanolett.9b02238
[3]
Furchi M, Urich A, Pospischil A, et al. Microcavity-integrated graphene photodetector. Nano Lett, 2012, 12, 2773 doi: 10.1021/nl204512x
[4]
Larki F, Abdi Y, Kameli P, et al. An effort towards full graphene photodetectors. Photonic Sens, 2022, 12, 31 doi: 10.1007/s13320-020-0600-7
[5]
Kind H, Yan H, Messer B, et al. Nanowire ultraviolet photodetectors and optical switches. Adv Mater, 2002, 14, 158 doi: 10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
[6]
He T, Ma H, Wang Z, et al. On-chip optoelectronic logic gates operating in the telecom band. Nat Photonics, 2024, 18, 60 doi: 10.1038/s41566-023-01309-7
[7]
Lee C M, Engelbrecht C J, Soper T D, et al. Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging. J Biophotonics, 2010, 3, 385 doi: 10.1002/jbio.200900087
[8]
Wang Z, Tan C H, Peng M, et al. Giant infrared bulk photovoltaic effect in tellurene for broad-spectrum neuromodulation. Light Sci Appl, 2024, 13, 277 doi: 10.1038/s41377-024-01640-w
[9]
Zhao T G, Guo J X, Li T, et al. Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem Soc Rev, 2023, 52, 1650 doi: 10.1039/D2CS00657J
[10]
Qiu H, Yu Z H, Zhao T G, et al. Two-dimensional materials for future information technology: Status and prospects. Sci China Inf Sci, 2024, 67, 160400 doi: 10.1007/s11432-024-4033-8
[11]
Su W H, Zhang S, Liu C, et al. Interlayer transition induced infrared response in ReS2/2D perovskite van der waals heterostructure photodetector. Nano Lett, 2022, 22, 10192 doi: 10.1021/acs.nanolett.2c04328
[12]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nature Nanotech, 2011, 6, 147 doi: 10.1038/nnano.2010.279
[13]
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech, 2012, 7, 699 doi: 10.1038/nnano.2012.193
[14]
Chhowalla M, Jena D, Zhang H. Two-dimensional semiconductors for transistors. Nat Rev Mater, 2016, 1, 16052
[15]
Dou L T, Yang Y, You J B, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun, 2014, 5, 5404 doi: 10.1038/ncomms6404
[16]
An X H, Liu F Z, Jung Y J, et al. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett, 2013, 13, 909 doi: 10.1021/nl303682j
[17]
Goossens S, Navickaite G, Monasterio C, et al. Broadband image sensor array based on graphene–CMOS integration. Nat Photonics, 2017, 11, 366 doi: 10.1038/nphoton.2017.75
[18]
Ping J F, Fan Z X, Sindoro M, et al. Recent advances in sensing applications of two-dimensional transition metal dichalcogenide nanosheets and their composites. Adv Funct Mater, 2017, 27, 1605817 doi: 10.1002/adfm.201605817
[19]
Li J, Chen C, Liu S L, et al. Ultrafast electrochemical expansion of black phosphorus toward high-yield synthesis of few-layer phosphorene. Chem Mater, 2018, 30, 2742 doi: 10.1021/acs.chemmater.8b00521
[20]
Wang Y, Jaiswal M, Lin M, et al. Electronic properties of nanodiamond decorated graphene. ACS Nano, 2012, 6, 1018 doi: 10.1021/nn204362p
[21]
Zhang B Y, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat Commun, 2013, 4, 1811 doi: 10.1038/ncomms2830
[22]
Zhao T G, Chen Y, Xu T F, et al. Topological insulator Bi2Se3 heterojunction with a low dark current for midwave infrared photodetection. ACS Photonics, 2024, 11, 2450 doi: 10.1021/acsphotonics.4c00347
[23]
Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010, 5, 574 doi: 10.1038/nnano.2010.132
[24]
Fei Z, Rodin A S, Andreev G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012, 487, 82 doi: 10.1038/nature11253
[25]
Xia F N, Wang H, Xiao D, et al. Two-dimensional material nanophotonics. Nature Photon, 2014, 8, 899 doi: 10.1038/nphoton.2014.271
[26]
Liu C S, Chen H W, Wang S Y, et al. Two-dimensional materials for next-generation computing technologies. Nat Nanotechnol, 2020, 15, 545 doi: 10.1038/s41565-020-0724-3
[27]
Liu Y, Huang Y, Duan X. Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567, 323 doi: 10.1038/s41586-019-1013-x
[28]
Luo L B, Hu H, Wang X H, et al. A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity. J Mater Chem C, 2015, 3, 4723 doi: 10.1039/C5TC00449G
[29]
Qu J, Chen J. Ag NPs and MoS2 QDs double modified graphene/GaAs near-infrared photodetector. Semicond Sci Technol, 2023, 38, 055007 doi: 10.1088/1361-6641/acc3bc
[30]
Wu J H, Yang Z W, Qiu C Y, et al. Enhanced performance of a graphene/GaAs self-driven near-infrared photodetector with upconversion nanoparticles. Nanoscale, 2018, 10, 8023 doi: 10.1039/C8NR00594J
[31]
Cai Z L, He X Y, Wang K K, et al. Enhancing performance of GaN/Ga2O3 P-N junction uvc photodetectors via interdigitated structure. Small Methods, 2024, 8, e2301148 doi: 10.1002/smtd.202301148
[32]
Zeng L H, Lin S H, Li Z J, et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv Funct Mater, 2018, 28, 1705970 doi: 10.1002/adfm.201705970
[33]
Wang L, Jie J S, Shao Z B, et al. MoS2 /Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible–near infrared photodetectors. Adv Funct Mater, 2015, 25, 2910 doi: 10.1002/adfm.201500216
[34]
Wang F, Zhang T, Xie R Z, et al. How to characterize figures of merit of two-dimensional photodetectors. Nat Commun, 2023, 14, 2224 doi: 10.1038/s41467-023-37635-1
[35]
Wang H. High gain single GaAs nanowire photodetector. Appl Phys Lett, 2013, 103, 093101
[36]
Wu J H, Qiu C Y, Feng S R, et al. A synergetic enhancement of localized surface plasmon resonance and photo-induced effect for graphene/GaAs photodetector. Nanotechnology, 2020, 31, 105204 doi: 10.1088/1361-6528/ab5a08
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 286 Times PDF downloads: 41 Times Cited by: 0 Times

    History

    Received: 03 November 2024 Revised: 04 December 2024 Online: Accepted Manuscript: 18 December 2024Uncorrected proof: 28 February 2025Published: 10 April 2025

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Baorui Fang, Ye Tian, Zongmin Ma. High carrier collection efficiency in graphene/GaAs heterojunction photodetectors[J]. Journal of Semiconductors, 2025, 46(4): 042701. doi: 10.1088/1674-4926/24110002 ****B R Fang, Y Tian, and Z M Ma, High carrier collection efficiency in graphene/GaAs heterojunction photodetectors[J]. J. Semicond., 2025, 46(4), 042701 doi: 10.1088/1674-4926/24110002
      Citation:
      Baorui Fang, Ye Tian, Zongmin Ma. High carrier collection efficiency in graphene/GaAs heterojunction photodetectors[J]. Journal of Semiconductors, 2025, 46(4): 042701. doi: 10.1088/1674-4926/24110002 ****
      B R Fang, Y Tian, and Z M Ma, High carrier collection efficiency in graphene/GaAs heterojunction photodetectors[J]. J. Semicond., 2025, 46(4), 042701 doi: 10.1088/1674-4926/24110002

      High carrier collection efficiency in graphene/GaAs heterojunction photodetectors

      DOI: 10.1088/1674-4926/24110002
      CSTR: 32376.14.1674-4926.24110002
      More Information
      • Baorui Fang obtained his bachelor’s degree from Harbin University of Science and Technology in 2020. He is currently pursuing a master’s degree at Dalian University. His supervisors are Associate Professor Zongmin Ma and Researcher Xuechao Yu. His research mainly focuses on the design, fabrication, and characterization of infrared photodetectors
      • Zongmin Ma holds a Ph.D. in Solid Mechanics from Jilin University and completed postdoctoral research in Materials Science at Dalian University of Technology. His research focuses on medical devices, digital design, biomechanics, novel low-dimensional material optoelectronic devices, and additive manufacturing
      • Corresponding author: yetian2022@sinano.ac.cnmzm9909@163.com
      • Received Date: 2024-11-03
      • Revised Date: 2024-12-04
      • Available Online: 2024-12-18

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return