Citation: |
Lei Hu, Siyi Huang, Zhi Liu, Tengfeng Duan, Si Wu, Dan Wang, Hui Yang, Jun Wang, Jianping Liu. GaN-based blue laser diodes with output power of 5 W and lifetime over 20 000 h aged at 60 °C[J]. Journal of Semiconductors, 2025, 46(4): 040501. doi: 10.1088/1674-4926/24110039
****
L Hu, S Y Huang, Z Liu, T F Duan, S Wu, D Wang, H Yang, J Wang, and J P Liu, GaN-based blue laser diodes with output power of 5 W and lifetime over 20 000 h aged at 60 °C[J]. J. Semicond., 2025, 46(4), 040501 doi: 10.1088/1674-4926/24110039
|
GaN-based blue laser diodes with output power of 5 W and lifetime over 20 000 h aged at 60 °C
DOI: 10.1088/1674-4926/24110039
CSTR: 32376.14.1674-4926.24110039
More Information-
References
[1] Akasaki I, Amano H, Sota S, et al. Stimulated emission by current injection from an AlGaN/GaN/GaInN quantum well device. Jpn J Appl Phys, 1995, 34, L1517 doi: 10.7567/JJAP.34.L1517[2] Nakamura S, Senoh M, Nagahama S I, et al. InGaN-based multi-quantum-well-structure laser diodes. Jpn J Appl Phys, 1996, 35, L74 doi: 10.1143/JJAP.35.L74[3] Amano H, Kito M, Hiramatsu K, et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn J Appl Phys, 1989, 28, L2112 doi: 10.1143/JJAP.28.L2112[4] Nakamura S, Iwasa N, Senoh M, et al. Hole compensation mechanism of P-type GaN films. Jpn J Appl Phys, 1992, 31, 1258 doi: 10.1143/JJAP.31.1258[5] Nakamura S, Mukai T, Senoh M, et al. Thermal annealing effects on P-type Mg-doped GaN films. Jpn J Appl Phys, 1992, 31, L139 doi: 10.1143/JJAP.31.L139[6] Nakamura S. GaN growth using GaN buffer layer. Jpn J Appl Phys, 1991, 30, L1705 doi: 10.1143/JJAP.30.L1705[7] Nakamura S, Senoh M, Mukai T. High-power InGaN/GaN double-heterostructure violet light emitting diodes. Appl Phys Lett, 1993, 62, 2390 doi: 10.1063/1.109374[8] Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl Phys Lett, 1994, 64, 1687 doi: 10.1063/1.111832[9] Nakatsu Y, Nagao Y, Kozuru K, et al. High-efficiency blue and green laser diodes for laser displays. Gallium Nitride Materials and Devices XIV, 2019, 10918 doi: 10.1117/12.2505309[10] König H, Ali M, Bergbauer W, et al. Visible GaN laser diodes: from lowest thresholds to highest power levels. Novel In-Plane Semiconductor Lasers XVIII, 2019, 10939 doi: 10.1117/12.2511976[11] Liang F, Zhao D G, Liu Z S, et al. GaN-based blue laser diode with 6.0 W of output power under continuous-wave operation at room temperature. J Semicond, 2021, 42, 112801 doi: 10.1088/1674-4926/42/11/112801[12] Hu L, Li D Y, Liu J P, et al. High-power GaN-based blue laser diodes with 7.5 W of light output power under continuous-wave operation. Acta Photonica Sinic, 2022, 51(2), 0251209 doi: 10.3788/gzxb20225102.0251209[13] Li S Q, Guo Q Q, Deng H Q, et al. Gallium nitride blue laser diodes with pulsed current operation exceeding 15 W in optical output power. J Semicond, 2024, 45, 110501 doi: 10.1088/1674-4926/24080031[14] Kishimoto K, Hirao T, Morizumi T, et al. Development of highly efficient blue and green edge-emitting laser diodes. Gallium Nitride Materials and Devices XIX, 2024, 12886 doi: 10.1117/12.2692586[15] Liu J P, Zhang L Q, Li D Y, et al. GaN-based blue laser diodes with 2.2 W of light output power under continuous-wave operation. IEEE Photonics Technol Lett, 2017, 29, 2203 doi: 10.1109/LPT.2017.2770169[16] Liu J P, Li Z C, Zhang L Q, et al. Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region. Appl Phys Express, 2014, 7, 111001 doi: 10.7567/APEX.7.111001[17] Tian A Q, Liu J P, Zhang L Q, et al. Green laser diodes with low threshold current density via interface engineering of InGaN/GaN quantum well active region. Opt Express, 2017, 25, 415 doi: 10.1364/OE.25.000415[18] Hu L, Ren X Y, Liu J P, et al. High-power hybrid GaN-based green laser diodes with ITO cladding layer. Photon Res, 2020, 8, 279 doi: 10.1364/PRJ.381262[19] Mehari S, Cohen D A, Becerrea D L, et al. Optical gain and loss measurements of semipolar III-nitride laser diodes with ITO/thin-p-GaN cladding layers. 2018 76th Device Research Conference (DRC), 2018, 1 doi: 10.1109/DRC.2018.8442174[20] Chilwell J, Hodgkinson I. Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. J Opt Soc Am A, 1984, 1, 742 doi: 10.1364/JOSAA.1.000742[21] Tian A Q, Hu L, Zhang L Q, et al. Design and growth of GaN-based blue and green laser diodes. Sci China Mater, 2020, 63, 1348 doi: 10.1007/s40843-020-1275-4[22] Tian A Q, Hu L, Li X, et al. Greatly suppressed potential inhomogeneity and performance improvement of c-plane InGaN green laser diodes. Sci China Mater, 2022, 65, 543 doi: 10.1007/s40843-021-1804-x[23] Tian A Q, Liu J P, Zhang L Q, et al. Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN: Mg cladding layer. Phys Status Solidi C, 2016, 13, 245 doi: 10.1002/pssc.201510186[24] Jiang L R, Liu J P, Tian A Q, et al. GaN-based green laser diodes. J Semicond, 2016, 37, 111001 doi: 10.1088/1674-4926/37/11/111001 -
Proportional views