Citation: |
Li Jinfeng, Tang Zhen'an, Wang Jiaqi. Systemon chip thermal vacuum sensor based on standard CMOS process[J]. Journal of Semiconductors, 2009, 30(3): 035004. doi: 10.1088/1674-4926/30/3/035004
****
Li J F, Tang Z, Wang J Q. Systemon chip thermal vacuum sensor based on standard CMOS process[J]. J. Semicond., 2009, 30(3): 035004. doi: 10.1088/1674-4926/30/3/035004.
|
Systemon chip thermal vacuum sensor based on standard CMOS process
DOI: 10.1088/1674-4926/30/3/035004
-
Abstract
An on-chip microelectromechanical system was fabricated in a 0.5 μm standard CMOS process for gas pressure detection. The sensor was based on a micro-hotplate (MHP) and had been integrated with a rail to rail operational amplifier and an 8-bit successive approximation register (SAR) A/D converter. A tungsten resistor was manufactured on the MHP as the sensing element, and the sacrificial layer of the sensor was made from polysilicon and etched by surface-micromachining technology. The operational amplifier was configured to make the sensor operate in constant current mode. A digital bit stream was provided as the system output. The measurement results demonstrate that the gas pressure sensitive range of the vacuum sensor extends from 1 to 105 Pa. In the gas pressure range from 1 to 100 Pa, the sensitivity of the sensor is 0.23 mV/ Pa, the linearity is 4.95%, and the hysteresis is 8.69%. The operational amplifier can drive 200 Ω resistors distortionlessly, and the SAR A/D converter achieves a resolution of 7.4 bit with 100 kHz sample rate. The performance of the operational amplifier and the SAR A/D converter meets the requirements of the sensor system. -
References
-
Proportional views