J. Semicond. > 2009, Volume 30 > Issue 8 > 085011

SEMICONDUCTOR INTEGRATED CIRCUITS

A low-noise PLL design achieved by optimizing the loop bandwidth

Bai Chuang, Zhao Zhenyu and Zhang Minxuan

+ Author Affiliations
DOI: 10.1088/1674-4926/30/8/085011

PDF

Abstract: This paper describes a low-noise phase-locked loop (PLL) design method to achieve minimum jitter. Based on the phase noise properties extracted from the transistor, and the low-pass or high-pass transfer characteristics of different noise sources to the output, an optimal loop bandwidth design method, derived from a continuous time PLL model, further improves the jitter characteristics of the PLL. The described method not only finds the optimal loop-bandwidth to minimize the overall PLL jitter, but also achieves optimal loop-bandwidth by changing the value of the resistor or charge pump current. In addition, a phase-domain behavioral model in ADS is presented for accurately predicting improved jitter performance of a PLL at system level. A prototype PLL designed in a 0.18 µm CMOS technology is used to investigate the accuracy of the theoretical predictions. The simulation shows significant performance improvement by using the proposed method. The simulated RMS and peak-to-peak jitter ofthe PLL at the optimal loop-bandwidth are 10.262 ps and 46.851 ps, respectively.

Key words: continue-time domain analysis, optimal loop bandwidth, phase-domain behavioral model, timing jitter

1

Analysis of morphological, structural and electrical properties of annealed TiO2 nanowires deposited by GLAD technique

B. Shougaijam, R. Swain, C. Ngangbam, T.R. Lenka

Journal of Semiconductors, 2017, 38(5): 053001. doi: 10.1088/1674-4926/38/5/053001

2

Scaling relation of domain competition on (2+1)-dimensional ballistic deposition model with surface diffusion

Kenyu Osada, Hiroyasu Katsuno, Toshiharu Irisawa, Yukio Saito

Journal of Semiconductors, 2016, 37(9): 092001. doi: 10.1088/1674-4926/37/9/092001

3

Design and analysis of 20 Gb/s inductorless limiting amplifier in 65 nm CMOS technology

Rui He, Jianfei Xu, Na Yan, Jie Sun, Liqian Bian, et al.

Journal of Semiconductors, 2014, 35(10): 105002. doi: 10.1088/1674-4926/35/10/105002

4

Analytical model for subthreshold current and subthreshold swing of short-channel double-material-gate MOSFETs with strained-silicon channel on silicon-germanium substrates

Pramod Kumar Tiwari, Gopi Krishna Saramekala, Sarvesh Dubey, Anand Kumar Mukhopadhyay

Journal of Semiconductors, 2014, 35(10): 104002. doi: 10.1088/1674-4926/35/10/104002

5

Analysis of the electrical characteristics of GaInP/GaAs HBTs including the recombination effect

Gourab Dutta, Sukla Basu

Journal of Semiconductors, 2012, 33(5): 054002. doi: 10.1088/1674-4926/33/5/054002

6

A two-dimensional analytical-model-based comparative threshold performance analysis of SOI-SON MOSFETs

Sanjoy Deb, Saptarsi Ghosh, N Basanta Singh, A K De, Subir Kumar Sarkar, et al.

Journal of Semiconductors, 2011, 32(10): 104001. doi: 10.1088/1674-4926/32/10/104001

7

SPICE compatible analytical electron mobility model for biaxial strained-Si-MOSFETs

Amit Chaudhry, J. N. Roy, S. Sangwan

Journal of Semiconductors, 2011, 32(5): 054001. doi: 10.1088/1674-4926/32/5/054001

8

A programmable gain amplifier with a DC offset calibration loop for a direct-conversion WLAN transceiver

Lei Qianqian, Lin Min, Chen Zhiming, Shi Yin

Journal of Semiconductors, 2011, 32(4): 045006. doi: 10.1088/1674-4926/32/4/045006

9

Gate current modeling and optimal design of nanoscale non-overlapped gate to source/drain MOSFET

Ashwani K. Rana, Narottam Chand, Vinod Kapoor

Journal of Semiconductors, 2011, 32(7): 074001. doi: 10.1088/1674-4926/32/7/074001

10

Sigma–delta modulator modeling analysis and design

Ge Binjie, Wang Xin'an, Zhang Xing, Feng Xiaoxing, Wang Qingqin, et al.

Journal of Semiconductors, 2010, 31(9): 095003. doi: 10.1088/1674-4926/31/9/095003

11

Nanoscale strained-Si MOSFET physics and modeling approaches: a review

Amit Chaudhry, J. N. Roy, Garima Joshi

Journal of Semiconductors, 2010, 31(10): 104001. doi: 10.1088/1674-4926/31/10/104001

12

Short locking time and low jitter phase-locked loop based on slope charge pump control

Guo Zhongjie, Liu Youbao, Wu Longsheng, Wang Xihu, Tang Wei, et al.

Journal of Semiconductors, 2010, 31(10): 105002. doi: 10.1088/1674-4926/31/10/105002

13

An 8-bit 180-kS/s differential SAR ADC with a time-domain comparator and 7.97-ENOB

Fan Hua, Wei Qi, Kobenge Sekedi Bomeh, Yin Xiumei, Yang Huazhong, et al.

Journal of Semiconductors, 2010, 31(9): 095011. doi: 10.1088/1674-4926/31/9/095011

14

Influence of optical phonons on the electronic mobility in a strained wurtzite AlN/GaN heterojunction under hydrostatic pressure

Zhou Xiaojuan, Ban Shiliang

Journal of Semiconductors, 2009, 30(8): 082001. doi: 10.1088/1674-4926/30/8/082001

15

Development and characteristics analysis of recessed-gate MOS HEMT

Wang Chong, Ma Xiaohua, Feng Qian, Hao Yue, Zhang Jincheng, et al.

Journal of Semiconductors, 2009, 30(5): 054002. doi: 10.1088/1674-4926/30/5/054002

16

Testing content addressable memories with physical fault models

Ma Lin, Yang Xu, Zhong Shiqiang, Chen Yunji

Journal of Semiconductors, 2009, 30(8): 085001. doi: 10.1088/1674-4926/30/8/085001

17

Design,Analysis,and Optimization of a CMOS Active Pixel Sensor

Xu Jiangtao, Yao Suying, Li Binqiao, Shi Zaifeng, Gao Jing, et al.

Chinese Journal of Semiconductors , 2006, 27(9): 1548-1551.

18

Improved Statistical Interconnect Timing Analysis Considering Scattering Effect

Lin Saihua, Yang Huazhong, Luo Rong, Wang Hui

Chinese Journal of Semiconductors , 2006, 27(11): 1918-1922.

19

Noise Analysis of Analog Correlator

Tu Chunjiang, Liu Bo’an,and Chen Hongyi

Chinese Journal of Semiconductors , 2005, 26(3): 480-486.

20

Synthesis Scheme for Low Power Designs Under Timing Constraints

Wang Ling,Wen Dongxin, Yang Xiaozong,and Jiang Yingta

Chinese Journal of Semiconductors , 2005, 26(2): 287-293.

  • Search

    Advanced Search >>

    GET CITATION

    Bai Chuang, Zhao Zhenyu, Zhang Minxuan. A low-noise PLL design achieved by optimizing the loop bandwidth[J]. Journal of Semiconductors, 2009, 30(8): 085011. doi: 10.1088/1674-4926/30/8/085011
    Bai C, Zhao Z Y, Zhang M X. A low-noise PLL design achieved by optimizing the loop bandwidth[J]. J. Semicond., 2009, 30(8): 085011. doi:  10.1088/1674-4926/30/8/085011.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4491 Times PDF downloads: 3621 Times Cited by: 0 Times

    History

    Received: 18 August 2015 Revised: 23 March 2009 Online: Published: 01 August 2009

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Bai Chuang, Zhao Zhenyu, Zhang Minxuan. A low-noise PLL design achieved by optimizing the loop bandwidth[J]. Journal of Semiconductors, 2009, 30(8): 085011. doi: 10.1088/1674-4926/30/8/085011 ****Bai C, Zhao Z Y, Zhang M X. A low-noise PLL design achieved by optimizing the loop bandwidth[J]. J. Semicond., 2009, 30(8): 085011. doi:  10.1088/1674-4926/30/8/085011.
      Citation:
      Bai Chuang, Zhao Zhenyu, Zhang Minxuan. A low-noise PLL design achieved by optimizing the loop bandwidth[J]. Journal of Semiconductors, 2009, 30(8): 085011. doi: 10.1088/1674-4926/30/8/085011 ****
      Bai C, Zhao Z Y, Zhang M X. A low-noise PLL design achieved by optimizing the loop bandwidth[J]. J. Semicond., 2009, 30(8): 085011. doi:  10.1088/1674-4926/30/8/085011.

      A low-noise PLL design achieved by optimizing the loop bandwidth

      DOI: 10.1088/1674-4926/30/8/085011
      • Received Date: 2015-08-18
      • Accepted Date: 2008-12-16
      • Revised Date: 2009-03-23
      • Published Date: 2009-07-31

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return