Citation: |
Wenyuan Li, Qian Zhang. A novel broadband power amplifier in SiGe HBT technology[J]. Journal of Semiconductors, 2013, 34(1): 015001. doi: 10.1088/1674-4926/34/1/015001
****
W Y Li, Q Zhang. A novel broadband power amplifier in SiGe HBT technology[J]. J. Semicond., 2013, 34(1): 015001. doi: 10.1088/1674-4926/34/1/015001.
|
A novel broadband power amplifier in SiGe HBT technology
DOI: 10.1088/1674-4926/34/1/015001
More Information
-
Abstract
A novel broadband power amplifier fabricated in 0.13 μm SiGe HBT technology is realized. The pseudo-differential structure is proposed to avoid the influence of the bonding wire due to the AC virtual ground created at the common emitter node. A compensated matching technique is adopted in interstage matching to expand bandwidth. A multi-stage broadband matching technique is used in an input/output matching network to offer broadband impedance matching, which ensures maximum power transfer. An adaptive bias circuit could improve linearity and efficiency in wide output power level. With 2.5 V power supply, the measured results achieve 96% 3-dB bandwidth (517-1470 MHz), 27.2 dB power gain, 26.9 dBm maximum output power, 19.7 dBm output 1 dB compression point, and 26.7% power added efficiency. -
References
[1] Aniktar H, Sjoland H, Mikkelsen J H, et al. A class-AB 1.65 GHz-2 GHz broadband CMOS medium power amplifier. NORCHIP Conference, 2005:269 http://ieeexplore.ieee.org/document/1597041/[2] Chen Y J E, Yang L Y, Yeh W C. An integrated wideband power amplifier for cognitive radio. IEEE Trans Microw Theory Tech, 2007, 55(10):2053 doi: 10.1109/TMTT.2007.906497[3] Nellis K, Zampardi P J. A comparison of linear handset power amplifiers in different bipolar technologies. IEEE J Solid-State Circuits, 2004, 39(10):1746 doi: 10.1109/JSSC.2004.833761[4] Johnson J B, Joseph A J, Sheridan D C, et al. Silicon-germanium BiCMOS HBT technology for wireless power amplifier applications. IEEE J Solid-State Circuits, 2004, 39:1605 doi: 10.1109/JSSC.2004.833570[5] Alimenti F, Mezzanotte P, Roselli L, et al. Modeling and characterization of the bonding-wire interconnection. Microw Theory Tech, 2001, 49(1):142 doi: 10.1109/22.899975[6] Bahmani F, Sanchez-Sinencio E. A highly linear pseudo-differential transconductance[CMOS OTA]. ESSCIRC, 2004:111 http://ieeexplore.ieee.org/document/1356630/?reload=true&arnumber=1356630[7] Ismail A, Abidi A A. A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network. IEEE J Solid-State Circuits, 2004, 39(12):2269 doi: 10.1109/JSSC.2004.836344[8] Taris T, Elgharniti O, Begueret J B, et al. UWB LNAs using LC ladder and transformers for input matching networks. 13th IEEE International Conference on Electronics, Circuits and Systems, 2006:792 http://ieeexplore.ieee.org/document/4263486/[9] Noh Y S, Yom I B, Park C S. Two-stage adaptive power amplifier MMIC for handset applications. European Microwave Conference, 2005, 3:4 http://ieeexplore.ieee.org/document/1610220/?reload=true&arnumber=1610220&contentType=Conference%20Publications[10] Liao H Y, Pan M W, Chiou H K. Fully-integrated CMOS class-E power amplifier using broadband and low-loss 1:4 transmission-line transformer. Electron Lett, 2010, 46(22):1490 doi: 10.1049/el.2010.2404[11] Li Y, Lopez J, Lie D Y C, et al. A broadband SiGe power amplifier in an efficient polar transmitter using envelope-tracking for mobile WiMAX. IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2011:137 http://ieeexplore.ieee.org/document/5719324/ -
Proportional views