Citation: |
Kuan Bao, Xiangning Fan, Wei Li, Zhigong Wang. A wideband current-commutating passive mixer for multi-standard receivers in a 0.18 μm CMOS[J]. Journal of Semiconductors, 2013, 34(1): 015003. doi: 10.1088/1674-4926/34/1/015003
****
K Bao, X N Fan, W Li, Z G Wang. A wideband current-commutating passive mixer for multi-standard receivers in a 0.18 μm CMOS[J]. J. Semicond., 2013, 34(1): 015003. doi: 10.1088/1674-4926/34/1/015003.
|
A wideband current-commutating passive mixer for multi-standard receivers in a 0.18 μm CMOS
DOI: 10.1088/1674-4926/34/1/015003
More Information
-
Abstract
This paper reports a wideband passive mixer for direct conversion multi-standard receivers. A brief comparison between current-commutating passive mixers and active mixers is presented. The effect of source and load impedance on the linearity of a mixer is analyzed. Specially, the impact of the input impedance of the transimpedance amplifier (TIA), which acts as the load impedance of a mixer, is investigated in detail. The analysis is verified by a passive mixer implemented with 0.18 μm CMOS technology. The circuit is inductorless and can operate over a broad frequency range. On wafer measurements show that, with radio frequency (RF) ranges from 700 MHz to 2.3 GHz, the mixer achieves 21 dB of conversion voltage gain with a-1 dB intermediate frequency (IF) bandwidth of 10 MHz. The measured ⅡP3 is 9 dBm and the measured double-sideband noise figure (NF) is 10.6 dB at 10 MHz output. The chip occupies an area of 0.19 mm2 and drains a current of 5.5 mA from a 1.8 V supply. -
References
[1] Brandolini M, Rossi P, Manstretta D, et al. Toward multistandard mobile terminals——fully integrated receivers requirements and architectures. IEEE Trans Microw Theory Tech, 2005, 53(3):1026 doi: 10.1109/TMTT.2005.843505[2] Giannini V, Nuzzo P, Soens C, et al. A 2 mm2 0.1-5 GHz software-defined radio receiver in 45 nm digital CMOS. IEEE J Solid-State Circuits, 2009, 44(12):3486 doi: 10.1109/JSSC.2009.2032585[3] Bao Kuan, Fan Xiangning, Li Wei, et al. A wideband LNA employing gate-inductive-peaking and noise-canceling techniques in 0.18μm CMOS. Journal of Semiconductors, 2012, 33(1):015003 doi: 10.1088/1674-4926/33/1/015003[4] Abidi. The path to SDR receiver. IEEE J Solid-State Circuits, 2007, 42(5):954 doi: 10.1109/JSSC.2007.894307[5] Lee T H. The design of CMOS radio-frequency integrated circuits. Cambridge, UK:Cambridge University Press, 2004 http://ci.nii.ac.jp/ncid/BA37787919[6] Zhou S, Chang M C F. A CMOS passive mixer with low flicker noise for low-power direct-conversion receivers. IEEE J Solid-State Circuits, 2005, 40(5):1084 doi: 10.1109/JSSC.2005.845981[7] Redman-White W, Leenaerts D M W. 1/f noise in passive CMOS mixers for low and zero IF integrated receivers. IEEE Eur Solid-State Circuits Conf, 2001:41 http://ieeexplore.ieee.org/document/1471329/keywords[8] Darabi H, Abid A A. Noise in RF-CMOS mixers:a simple physical model. IEEE J Solid-State Circuits, 2000, 35(1):15 doi: 10.1109/4.818916[9] Terrovitis M T, Meyer R G. Intermodulation distortion in current-commutating CMOS mixers. IEEE J Solid-State Circuits, 2000, 35(10):1461 doi: 10.1109/4.871323[10] Mirzaei, Darabi H, Yazdi A, et al. A 65 nm CMOS quad-band SAW-less receiver SoC for GSM/GPRS/EDGE Ahmad. IEEE J Solid-State Circuits, 2011, 46(4):950 doi: 10.1109/JSSC.2011.2109570[11] Wang Riyan, Huang Jiwei, Li Zhengping, et al. A 1.2 V CMOS front-end for LTE direct conversion SAW-less receiver. Journal of Semiconductors, 2012, 33(3):035005 doi: 10.1088/1674-4926/33/3/035005[12] Hao Shilei, Mei Niansong, Huang Yumei, et al. A 5 GHz 7.2 dB NF low power direct conversion receiver front-end with balun LNA. Journal of Semiconductors, 2011, 32(12):125006 doi: 10.1088/1674-4926/32/12/125006[13] Kim T W, Kim B. A 13-dB ⅡP3 improved low-power CMOS RF programmable gain amplifier using differential circuit transconductance linearization for various terrestrial mobile D-TV applications. IEEE J Solid-State Circuits, 2006, 41(4):945 doi: 10.1109/JSSC.2006.870744[14] Kim T W, Kim B, Lee K. Highly linear receiver front-end adopting MOSFET transconductance-linearization by multiple gated transistors. IEEE J Solid-State Circuits, 2004, 41(4):223 http://ieeexplore.ieee.org/document/1261304/keywords[15] Poobuaphen N, Chen W H, Boos Z, et al. A 1.5 V, 0.7-2.5 GHz CMOS quadrature demodulator for multiband direct-conversion receiver. IEEE J Solid-State Circuits, 2007, 42(8):1669 doi: 10.1109/JSSC.2007.900294[16] Ingels M, Giannini V, Borremans J, et al. A 5 mm2 40 nm LP CMOS transceiver for a software-defined radio platform. IEEE J Solid-State Circuits, 2010, 45(12):2794 doi: 10.1109/JSSC.2010.2075210[17] Bagheri R, Mirzaei A, Chehrazi S, et al. An 800 MHz-6 GHz software-defined wireless receiver in 90-nm CMOS. IEEE J Solid-State Circuits, 2006, 41(12):2860 doi: 10.1109/JSSC.2006.884835[18] Elahi I, Muhammad K. ⅡP2 calibration by injecting DC offset at the mixer in a wireless receiver. IEEE Trans Circuits Syst I, Reg Papers, 2007, 54(12):1135 http://ieeexplore.ieee.org/document/4358634/[19] Manstretta D, Brandolini M, Svelto F. Second-order intermodulation mechanisms in CMOS down converters. IEEE J Solid-State Circuits, 2003, 38(3):394 doi: 10.1109/JSSC.2002.808310[20] Brandolini M, Rossi P, Sanzogni D, et al. A CMOS direct down-converter with +78 dBm minimum ⅡP2 for 3G cell-phones. IEEE International Solid-State Circuits Conference, 2005 doi: 10.1088/1674-4926/34/1/015003;jsessionid=8193813383599809AF6795D3DFFAFFD2.c1.iopscience.cld.iop.org#references[21] Kim N, Aparin V, Larson L E. A resistively degenerated wideband CMOS passive mixer with low noise figure and high ⅡP2. IEEE Trans Microw Theory Tech, 2010, 58(4):820 doi: 10.1109/TMTT.2010.2042644[22] Khatri H, Gudem P S, Larson L E. Distortion in current commutating passive CMOS down conversion mixers. IEEE Trans Microw Theory Tech, 2009, 57(11):2671 doi: 10.1109/TMTT.2009.2031930[23] Le V H, Nguyen H N, Lee I Y, et al. A passive mixer for a wideband TV tuner. IEEE Trans Circuits Syst Ⅱ, 2011, 58(7):398 doi: 10.1109/TCSII.2011.2158262 -
Proportional views