Citation: |
Zengqin Lin, Xiangqian Xiu, Shiying Zhang, Xuemei Hua, Zili Xie, Rong Zhang, Peng Chen, Ping Han, Youdou Zheng. GaN nanopillars with a nickel nano-island mask[J]. Journal of Semiconductors, 2013, 34(12): 123001. doi: 10.1088/1674-4926/34/12/123001
****
Z Q Lin, X Q Xiu, S Y Zhang, X M Hua, Z L Xie, R Zhang, P Chen, P Han, Y D Zheng. GaN nanopillars with a nickel nano-island mask[J]. J. Semicond., 2013, 34(12): 123001. doi: 10.1088/1674-4926/34/12/123001.
|
-
Abstract
Uniform GaN nanopillar arrays have been successfully fabricated by inductively coupled plasma etching using self-organized nickel nano-islands as the masks on GaN/sapphire. GaN nanopillars with diameters of 350 nm and densities of 2.6×108 cm-2 were demonstrated and controlled by the thickness of Ni film and the NH3 annealing time. These GaN nanopillars show improved optical properties and strain change compared to that of GaN film before ICP etching. Such structures with large-area uniformity and high density could provide additional advantages for light emission of light-emitting diodes, quality improvement of ELO regrowth, etc.-
Keywords:
- GaN nanopillars,
- nickel nano-island,
- thermal ammonia etching,
- mask,
- ICP,
- SEM
-
References
[1] Pearton S J, Zolper J C, Shui R J, et al. GaN:processing, defects, and devices. J Appl Phys, 1999, 86:1 doi: 10.1063/1.371145[2] Qian F, Li Y, Gradecak S, et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat Mater, 2008, 7:701 doi: 10.1038/nmat2253[3] Zhong Z, Qian F, Wang D, et al. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett, 2003, 3:343 doi: 10.1021/nl034003w[4] Tang Y B, Chen Z H, Song H S, et al. Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. Nano Lett, 2008, 8:4191 doi: 10.1021/nl801728d[5] Dobrokhotov V, McIlroy D N, Norton M G, et al. Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles. J Appl Phys, 2006, 99:104302 doi: 10.1063/1.2195420[6] Wang X B, Song J H, Zhang F, et al. Electricity generation based on one-dimensional group-Ⅲ nitride nanomaterials. Adv Mater, 2010, 22:2155 doi: 10.1002/adma.v22:19[7] Duan X, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers. Nature, 2003, 421:241 doi: 10.1038/nature01353[8] Huang Y, Duan X, Lieber C M. Nanowires for integrated multicolor nanophotonics. Small, 2005, 1:142 doi: 10.1002/smll.200400030/abstract[9] Lee C H, Kim Y J, Hong Y J, et al. Flexible inorganic nanostructure light-emitting diodes fabricated on grapheme films. Adv Mater, 2011, 10:1002 doi: 10.1002/adma.201102407/full?isReportingDone=true[10] Lai C M, Liu W Y, Tsay J D, et al. Self-separated freestanding GaN grown on patterned substrate by hydride vapor phase epitaxy. Phys Status Solidi, 2007, 7:2231 doi: 10.1002/pssc.200674733/abstract[11] Zubia D, Hersee S D. Nanoheteroepitaxy:the application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials. J Appl Phys, 1999, 85:6492 doi: 10.1063/1.370153[12] Deb P, Kim H, Qin Y, et al. GaN nanorod Schottky and p-n junction diodes. Nano Lett, 2006, 6:2893 doi: 10.1021/nl062152j[13] Kim H M, Kang T W, Chung K S. Nanoscale ultraviolet-light-emitting diodes using wide-bandgap gallium nitride nanorods. Adv Mater, 2003, 15:567 doi: 10.1002/adma.200304554[14] Hersee S D, Sun X Y, Wang X. The controlled growth of GaN nanowires. Nano Lett, 2006, 6:1808 doi: 10.1021/nl060553t[15] Kim H M, Kim D S, Park Y S, et al. Growth of GaN nanorods by a hydride vapor phase epitaxy method. Adv Mater, 2002, 14:991 doi: 10.1002/(ISSN)1521-4095[16] Paramanik D, Motayed A, Aluri G S, et al. Formation of large-area GaN nanostructures with controlled geometry and morphology using top-down fabrication scheme. J Vac Sci Technol B, 2012, 30:052202 doi: 10.1116/1.4739424[17] Choi W K, Liew T H, Dawood M K. Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. Nano Lett, 2008, 11:3799 doi: 10.1021/nl802129f[18] Xie Zili, Zhou Yuanjun, Song Lihong, et al. Structural properties of GaN (0001) epitaxial layers revealed by high resolution X-ray diffraction. Physics, Mechanics & Astronomy, Science China, 2010, 53:68 doi: 10.1007/s11433-010-0102-5?slug=full%20text[19] Choi J H, Lee T Y, Choi S H, et al. Density control of carbon nanotubes using NH3 plasma treatment of Ni catalyst layer. Thin Solid Films, 2003, 435:318 doi: 10.1016/S0040-6090(03)00341-9[20] Jansen H V, de Boer M J, Unnikrishnan S. Black silicon method X:a review on high speed and selective plasma etching of silicon with profile control:an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment. J Micromech Microeng, 2009, 19:033001 doi: 10.1088/0960-1317/19/3/033001[21] Perlin P, Jauberthie-Carillon C, Itie J P, et al. Raman scattering and X-ray-absorption spectroscopy in gallium nitride under high pressure. Phys Rev B, 1992, 45:83 doi: 10.1103/PhysRevB.45.83[22] George S, Ilan S, Warren M, et al. Catalytic hydride vapour phase epitaxy growth of GaN nanowires. Nanotechnology, 2005, 16:2342 doi: 10.1088/0957-4484/16/10/058[23] Seo H W, Bae S Y, Park J H, et al. Strained gallium nitride nanowires. Chem Phys, 2002, 116:9492 doi: 10.1063/1.1475748[24] Zhao D G, Xu S J, Xie M H, et al. Stress and its effect on optical properties of GaN epilayers grown on Si (111), 6H-SiC (0001), and c-plane sapphire. Appl Phys Lett, 2003, 83:677 doi: 10.1063/1.1592306[25] Schnitzer I, Yablonovitch E, Caneau C, et al. 30% external quantum efficiency from surface textured, thin-film light-emitting diodes. Appl Phys Lett, 1993, 63:2174 doi: 10.1063/1.110575 -
Proportional views