Citation: |
Wenfeng Xiang, Kun Liu, Kun Zhao, Shouxian Zhong. Ni(Pt) germanosilicide contacts formed on heavily boron doped Si1-xGex substrates for Schottky source/drain transistors[J]. Journal of Semiconductors, 2013, 34(12): 123002. doi: 10.1088/1674-4926/34/12/123002
****
W F Xiang, K Liu, K Zhao, S X Zhong. Ni(Pt) germanosilicide contacts formed on heavily boron doped Si1-xGex substrates for Schottky source/drain transistors[J]. J. Semicond., 2013, 34(12): 123002. doi: 10.1088/1674-4926/34/12/123002.
|
Ni(Pt) germanosilicide contacts formed on heavily boron doped Si1-xGex substrates for Schottky source/drain transistors
DOI: 10.1088/1674-4926/34/12/123002
More Information
-
Abstract
The electrical properties of Ni0.95Pt0.05-germanosilicide/Si1-xGex contacts on heavily doped p-type strained Si1-xGex layers as a function of composition and doping concentration for a given composition have been investigated. A four-terminal Kelvin-resistor structure has been fabricated by using the conventional complementary metal-oxide-semiconductor (CMOS) process to measure contact resistance. The results showed that the contact resistance of the Ni0.95Pt0.05-germanosilicide/Si1-xGex contacts slightly reduced with increasing the Ge fraction. The higher the doping concentration, the lower the contact resistivity. The contact resistance of the samples with doping concentration of 4×1019 cm-3 is nearly one order of magnitude lower than that of the samples with doping concentration of 5×1017 cm-3. In addition, the influence of dopant segregation on the contact resistance for the lower doped samples is larger than that for the higher doped samples. -
References
[1] Wang C, Snyder J P, Tucker J R. Sub-40 nm PtSi Schottky source/drain metal-oxide-semiconductor field-effect transistor. Appl Phys Lett, 1999, 74:1174 doi: 10.1063/1.123477[2] Iwai H, Ohguro T, Ohmi S. NiSi salicide technology for scaled CMOS. Microelectron Eng, 2002, 60:157 doi: 10.1016/S0167-9317(01)00684-0[3] Liehr M, Schmid P E, LeGoues F K, et al. Correlation of Schottky-barrier height and microstructure in the epitaxial Ni silicide on Si (111). Phys Rev Lett, 1985, 54:2139 doi: 10.1103/PhysRevLett.54.2139[4] Weber W M, Geelhaar L, Graham A P, et al. Silicon-nanowire transistor with intruded nickel-silicide contacts. Nano Lett, 2006, 6:2660 doi: 10.1021/nl0613858[5] Luo J, Qiu Z J, Zhang Z, et al. Interaction of NiSi with dopants for metallic source/drain applications. J Vac Sci Technol B, 2010, 28:c1i1 doi: 10.1116/1.3248267[6] Liu J, Ozturk M C. Nickel germanosilicide contacts formed on heavily boron doped Si1-xGex source/drain junctions for nanoscale CMOS. IEEE Trans Electron Devices, 2005, 52:1535 doi: 10.1109/TED.2005.850613[7] Jarmar T, Ericson F, Smith U, et al. Influence of germanium on the formation of NiSi1-xGex on (111)-oriented Si1-xGex. J Appl Phys, 2005, 98:053507 doi: 10.1063/1.2034081[8] Xiang W F. Erbium germanosilicide ohmic contacts on Si1-xGex (x=0-0.3) substrates. Science China:Phys Mechan. & Astron, 2011, 54:1116[9] Ikeda K, Oda M, Kamimuta Y, et al. Hole-mobility and drive-current enhancement in Ge-rich strained silicon-germanium wire tri-gate metal-oxide-semiconductor field-effect transistors with nickel-germanosilicide metal source and drain. Appl Phys Express, 2010, 3:124201 doi: 10.1143/APEX.3.124201[10] Schreyer T A, Saraswat K C. A two-dimensional analytical model of the cross-bridge Kelvin resistor. IEEE Electron Device Lett, 1986, 7:661 doi: 10.1109/EDL.1986.26511[11] Varahramyan K, Verret E J. A model for specific contact resistance applicable for titanium silicide-silicon contacts. Solid-State Electron, 1996, 39:1601 doi: 10.1016/0038-1101(96)00091-3[12] Nur O, Willander M, Turan R, et al. Electrical and structural characterization of PtSi/p-Si1-xGex low Schottky barrier junctions prepared by co-sputtering. J Vac Sci Technol B, 1997, 15:241 doi: 10.1116/1.589272[13] Qiu Z, Zhang Z, Ostling M, et al. A comparative study of two different schemes to dopant segregation at NiSi/SI and PtSi/Si interfaces for Schottky barrier height lowering. IEEE Electron Devices, 2008, 55:396 doi: 10.1109/TED.2007.911080 -
Proportional views