Citation: |
Liang Jing, Hongling Xiao, Xiaoliang Wang, Cuimei Wang, Qingwen Deng, Zhidong Li, Jieqin Ding, Zhanguo Wang, Xun Hou. Enhanced performance of InGaN/GaN multiple quantum well solar cells with patterned sapphire substrate[J]. Journal of Semiconductors, 2013, 34(12): 124004. doi: 10.1088/1674-4926/34/12/124004
****
L Jing, H L Xiao, X L Wang, C M Wang, Q W Deng, Z D Li, J Q Ding, Z G Wang, X Hou. Enhanced performance of InGaN/GaN multiple quantum well solar cells with patterned sapphire substrate[J]. J. Semicond., 2013, 34(12): 124004. doi: 10.1088/1674-4926/34/12/124004.
|
Enhanced performance of InGaN/GaN multiple quantum well solar cells with patterned sapphire substrate
DOI: 10.1088/1674-4926/34/12/124004
More Information
-
Abstract
In this paper, the enhanced performance of InGaN/GaN multiple quantum well solar cells grown on patterned sapphire substrates (PSS) was demonstrated. The short-circuit current (Jsc) density of the solar cell grown on PSS showed an improvement of 60%, compared to that of solar cells grown on conventional sapphire substrate. The improved performance is primarily due to the reduction of edge dislocations and the increased light absorption path by the scattering from the textured surface of the PSS. It shows that the patterned sapphire technology can effectively alleviate the problem of high-density dislocations and low Jsc caused by thinner absorption layers of the InGaN based solar cell, and it is promising to improve the efficiency of the solar cell.-
Keywords:
- InGaN,
- patterned sapphire substrate,
- solar cell
-
References
[1] Wu J, Walukiewicz W, Yu K M, et al. Unusual properties of the fundamental band gap of InN. Appl Phys Lett, 2002, 80(21):3967 doi: 10.1063/1.1482786[2] Xiao H, Wang X, Wang J, et al. Growth and characterization of InN on sapphire substrate by RF-MBE. J Cryst Growth, 2005, 276(3/4):401 http://adsabs.harvard.edu/abs/2005JCrGr.276..401X[3] Muth J F, Lee J H, Shmagin I K, et al. Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl Phys Lett, 1997, 71(18):2572 doi: 10.1063/1.120191[4] Wu J, Walukiewicz W, Yu K M, et al. Superior radiation resistance of In1-xGaxN alloys:full-solar-spectrum photovoltaic material system. J Appl Phys, 2003, 94(10):6477 doi: 10.1063/1.1618353[5] Jani O, Ferguson I, Honsberg C, et al. Design and characterization of GaN/InGaN solar cells. Appl Phys Lett, 2007, 91(13):132117 doi: 10.1063/1.2793180[6] Zhang Xiaobin, Wang Xiaoliang, Xiao Hongling, et al. InGaN/GaN multiple quantum well solar cells with an enhanced open-circuit voltage. Chin Phys B, 2011, 20(2):028402 doi: 10.1088/1674-1056/20/2/028402[7] Jampana B R, Melton A G, Jamil M, et al. Design and realization of wide-band-gap ( 2.67 eV) InGaN p-n junction solar cell. IEEE Electron Device Lett, 2010, 31(1):32 doi: 10.1109/LED.2009.2034280[8] Dahal R, Li J, Aryal K, et al. InGaN/GaN multiple quantum well concentrator solar cells. Appl Phys Lett, 2010, 97(7):073115 doi: 10.1063/1.3481424[9] Elsner J, Jones R, Sitch P K, et al. Theory of threading edge and screw dislocations in GaN. Phys Rev Lett, 1997, 79(19):3672 doi: 10.1103/PhysRevLett.79.3672[10] Sakai S. Homoepitaxial and heteroepitaxial growth of InGaN/GaN. Electrons and Communications in Japan (Part Ⅱ Electronics), 2000, 83(2):17 doi: 10.1002/(ISSN)1520-6432[11] Holec D, Costa P M F J, Kappers M J, et al. Critical thickness calculations for InGaN/GaN. J Cryst Growth, 2007, 303(1):314 doi: 10.1016/j.jcrysgro.2006.12.054[12] Sheu J K, Yang C C, Tu S J, et al. Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers. IEEE Electron Device Lett, 2009, 30(3):225 doi: 10.1109/LED.2008.2012275[13] Sakai A, Sunakawa H, Usui A. Defect structure in selectively grown GaN films with low threading dislocation density. Appl Phys Lett, 1997, 71(16):2259 doi: 10.1063/1.120044[14] Kapolnek D, Keller S, Vetury R, et al. Anisotropic epitaxial lateral growth in GaN selective area epitaxy. Appl Phys Lett, 1997, 71:1204 doi: 10.1063/1.119626[15] Lee K S, Kwack H S, Hwang J S, et al. Spatial correlation between optical properties and defect formation in GaN thin films laterally overgrown on cone-shaped patterned sapphire substrates. J Appl Phys, 2010, 107(10):103506 doi: 10.1063/1.3388014[16] Yang C C, Sheu J K, Kuo C H, et al. Improved power conversion efficiency of InGaN Photovoltaic devices grown on patterned sapphire substrates. IEEE Electron Device Lett, 2011, 32(4):536 doi: 10.1109/LED.2011.2107725[17] Lee Y J, Lee M H, Cheng C M, et al. Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate. Appl Phys Lett, 2011, 98(26):263504 doi: 10.1063/1.3605244[18] Srikant V, Speck J S, Clarke D R. Mosaic structure in epitaxial thin films having large lattice mismatch. J Appl Phys, 1997, 82(9):4286 doi: 10.1063/1.366235[19] Chu M T, Liao W Y, Horng R H, et al. Growth and characterization of p-InGaN/i-InGaN/n-GaN double-heterojunction solar cells on patterned sapphire substrates. IEEE Electron Device Lett, 2011, 32(7):922 doi: 10.1109/LED.2011.2144954 -
Proportional views