Citation: |
Xin Wang, Wu Lu, Qi Guo, Xue Wu, Shanbin Xi, Wei Deng, Jiangwei Cui, Jinxin Zhang. Total ionizing dose effects on 12-bit CBCMOS digital-to-analog converters[J]. Journal of Semiconductors, 2013, 34(12): 124006. doi: 10.1088/1674-4926/34/12/124006
****
X Wang, W Lu, Q Guo, X Wu, S B Xi, W Deng, J W Cui, J X Zhang. Total ionizing dose effects on 12-bit CBCMOS digital-to-analog converters[J]. J. Semicond., 2013, 34(12): 124006. doi: 10.1088/1674-4926/34/12/124006.
|
Total ionizing dose effects on 12-bit CBCMOS digital-to-analog converters
DOI: 10.1088/1674-4926/34/12/124006
More Information
-
Abstract
A digital-to-analog converter (DAC) in CBCMOS technology was irradiated by 60Co γ-rays at various dose rates and biases for investigating the ionizing radiation response of the DAC. The radiation responses show that the function curve and the key electrical parameters of the DAC in CBCMOS technology are sensitive to total dose and dose rates. Under different bias conditions, the radiation failure levels were different, and the radiation damage under operation bias conditions was more severe. Finally, test results were preliminarily analyzed by relating the failure mode to DAC architecture and process technology.-
Keywords:
- digital-to-analog,
- CBCMOS,
- dose rate effect,
- ionizing radiation
-
References
[1] Franco F J, Lozano J, Agapito J A. Radiation effects on CMOS R/2R ladder digital-to-analog converters. Noordwijk, Netherlands:RADECS, 2003:571[2] Aghara S, Fink R J, Charlton W S, et al. Degradation of commercially available DAC ICs in a mixed-radiation environment. IEEE Rad Effects Data Workshop Rec, Piscataway, NJ, 2002:34 http://ieeexplore.ieee.org/document/1281318/?reload=true&arnumber=1281318[3] Ampe J, Thai V, Buchner S, et al. COTS ADC & DAC selection and qualification for the GLAST mission. IEEE Rad Effects Data Workshop, Piscataway, NJ, 2005:79[4] Franco F J, Zong Y, De Agapito J A, et al. Radiation tolerant D/A converters for the LHC cryogenic system. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 553(3):604 http://cat.inist.fr/?aModele=afficheN&cpsidt=17255658[5] Prater J S, Brown B, Trinh T. Analysis of low dose rate effects on parasitic bipolar structures in CMOS processes for mixed-signal integrated circuits. IEEE Trans Nucl Sci, 2011, 58(3):1023 doi: 10.1109/TNS.2011.2116041[6] Wang Y, Lu W, Ren D, et al. Total dose effect of 10-bit bipolar D/A converter under different 60Co γ dose rates. Atomic Energy Science and Technology, 2009, 43(10):951[7] Liu Y, Yang S, Lin D, et al. Synergistic effect of neutron and gamma irradiation on 10-bit CMOS digital-to-analog converter. High Power Laser and Particle Beams, 2010, 22(9):2186 doi: 10.3788/HPLPB[8] Winokur P S, Schwank J R, Mcwhrter P J, et al. Cr relating the radiation response of MOS capacitors and transistors. IEEE Trans Nucl Sci, 1984, 31(6):1453 doi: 10.1109/TNS.1984.4333529[9] Witczak S C, Schrimpf R D, Galloway K F, et al. Gain degradation of lateral and substrate pnp bipolar junction transistors. IEEE Trans Nucl Sci, 1996, 43(6):3151 doi: 10.1109/23.556919[10] Nowlin R N, Fleetwood D M, Schrimpf R D, et al. Hardness-assurance and testing issues for bipolar/BiCMOS devices. IEEE Trans Nucl Sci, 1993, 40(6):1686 doi: 10.1109/23.273492[11] Schrimpf R D, Graves R J, Schmidt D M, et al. Hardness-assurance issues for lateral PNP bipolar junction transistors. IEEE Trans Nucl Sci, 1995, 42(6):1641 doi: 10.1109/23.488761 -
Proportional views